在前面我们分析了三副本的潜在隐患,也介绍了双重RAID架构的工作原理与技术特点。双重RAID究竟能否有效解决三副本的缺陷?让我们从二者之间的对比开始。
故障修复时间更短,业务影响更小
硬盘损坏时,双重RAID机制优先通过节点内RAID恢复数据,该恢复机制可自动调节速度以避让工作负载,前端业务无感知。无需触发网络数据重建,从而有效地避免了网络重建风暴。
节点故障时,可通过迁移磁盘到另一台物理服务器,实现节点迁移(无需拷贝或重建数据)。SVM存储池上每个磁盘记载关于存储池构成的全部信息,分布式存储的vOSD的ID号及用户数据,保存在SVM存储池的虚拟卷上,自动随着SVM存储池的迁移从一台物理服务器迁移到另一台物理服务器,主机名及vOSD的ID号保存不变,实现快速节点修复。
容错性更强,可允许多节点同时有磁盘损坏
三副本分布式存储通过跨节点的副本保护,可有效防止单个或两个磁盘损坏对业务数据的影响,但是容错性受到限制,如在三副本的情况下,不同故障域内之间,最多只能允许2个节点有磁盘损坏,超出2个节点出现磁盘故障,则极有可能发生数据丢失,如图1所示。
图 1 三副本分布式存储多节点硬盘损坏导致数据丢失
铁力士分布式存储通过双重RAID 机制,能够将容错性提升一个数量级。如图2所示,以节点内RAID 10+节点间2副本为例,当每个节点都出现磁盘故障的时候,可以通过节点内RAID 分别修复,保障整个系统数据无丢失,业务无中断。
图 2 双重RAID容忍多节点磁盘损坏
数据持久性(Durability)高出一个数量级
下面通过具体数值来比较三副本与双重RAID的数据持久性(可靠性)。数据持久性指标可通过存储系统的AFR(Annual Failure Rate)来衡量。考虑一个1000个6TB硬盘的存储集群,每个机械硬盘的MTTF(Mean Time to Failure)为1000,000小时。在计算中需要运用两个著名的MTTF公式,一个是关于RAID6,其MTTF=(MTTF)*(MTTF)*(MTTF)/(N*(N-1)*(N-2)*MTTR), 另一个是关于RAID5,其MTTF=(MTTF)*(MTTF)/(N*(N-1)MTTR), 其中MTTR(Mean Time to Repair)是硬盘平均修复时间。
在三副本条件下,存储系统共有333组三副本,每组三副本的MTTF相当于N=3的RAID6,在分布式并发修复的条件下,MTTR通常为3小时(每半小时修复1TB数据),因此每组三副本的MTTF =1000000*1000000*1000000/(3*2*1*3)=5.56x 1016 小时,而整个系统的MTTF = 5.56x 1016 /333 =1.67x 1014 小时。折算为AFR(一年共8760小时),AFR=8760/(1.67x 1014) =5.2x 10-11。
在双重RAID情况下,考虑节点内采用(2+1) RAID5,存储系统共有333组RAID5,为简化计算,考虑每组RAID对应于两个vOSD,12TB数据。据测算,RAID5的MTTR为30小时,每组RAID5 (vOSD)的MTTF=1000000*1000000/(3*2*30)=5.56x 109 小时。当一个RAID5组损坏时,由于vOSD在跨节点之间有镜像保护(其可靠性相当于N=2 RAID5),采用分布式并发修复12TB数据,每半小时修复1TB数据,需6小时,因此,其MTTR=(5.56x 109 )* (5.56x 109 )/(2*1*6)=2.58x 1018 小时。考虑到整个存储系统有333组RAID5, 因此整个系统的MTTF=2.58x 1018/333 =7,75x 1015 小时,相当于三副本MTTF的46倍。折算为AFR,双重RAID的AFR=8760/(7.75x 1015)= 1.1x 10-12 。
对比三副本和双重RAID的数据持久性,可见双重RAID的数据可靠性高于三副本一个数量级以上。
总结
铁力士分布式存储将传统磁盘阵列的RAID技术、存储虚拟化管理技术与分布式存储技术相结合,有效地解决了普通分布式存储面临的IO分布不均匀和木桶效应导致的性能缺陷,大幅度提升系统IOPS性能,并避免了普通分布式存储因网络重建风暴而可能导致的稳定性隐患。同时,双重RAID架构的数据可靠性高于三副本分布式存储一个数量级以上。
好文章,需要你的鼓励
大数据可观测性初创公司Monte Carlo Data推出全新Agent Observability产品,为AI应用提供全方位数据和AI可观测性。该工具帮助团队检测、分类和修复生产环境中AI应用的可靠性问题,防止代价高昂的"幻觉"现象,避免客户信任度下降和系统宕机。新产品采用大语言模型作为评判器的技术,能够同时监控AI数据输入和输出,提供统一的AI可观测性解决方案。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
网络安全公司Aikido披露了迄今最大规模的npm供应链攻击事件。攻击者通过钓鱼邮件获取维护者账户凭证,向18个热门JavaScript包注入恶意代码,这些包每周下载量超过26亿次。恶意代码专门劫持加密货币交易,监控浏览器API接口将资金转移至攻击者地址。受影响的包括chalk、debug等广泛使用的开发工具库。虽然攻击在5分钟内被发现并及时公开,但专家警告此类上游攻击极具破坏性,可能与朝鲜黑客组织相关。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。