以Ceph、VSAN为代表的软件定义存储(Software Defined Storage,SDS)是一个横向扩展、自动均衡、自愈合的分布式存储系统,将商用x86服务器、固态硬盘、机械硬盘等硬件资源整合为一个瘦供给的资源池,并以块存储、文件存储、对象存储、Restful API等多种接口方式提供存储服务。
无论是Ceph、VSAN,或者其演化版本,有一个共同的技术特征,即采用网络RAID方式实现数据保护,以3副本或纠删码为代表,其中3副本用于对小块数据读写性能有一定要求的应用场景,而纠删码则适用于视频数据、备份及归档等大文件场景。以3副本为例,业务数据被分割为固定大小的数据块,通常为4MB,每个数据块在不同的节点上保存3个副本(如图1所示),其分布机制是依照一致性哈希算法(Consistent Hashing)或CRUSH算法,将各个副本数据随机分布在不同节点、不同磁盘中,以实现数据自动平衡和横向扩展。当磁盘或节点遭遇故障或损坏时,系统会自动根据预先设定的规则,重新建立一个新的数据副本,称之为数据重建。

图 1 分布式存储副本机制
虽然分布式存储的SDS理念很好,横向扩展能力不错,自动添加和删除节点都是优势,但与传统集中式存储(磁盘阵列)相比,其稳定性和性能仍然存在明显的短板。
首先,在性能方面,三副本分布式存储容易受到IO分布不均匀和木桶效应的影响,导致大延迟和响应迟钝的现象。以Ceph为例,多个存储基本单元,Placement Group (PG),封装为一个OSD,每个OSD直接对应于某一个机械硬盘HDD;主流的7200转HDD,受到机械臂寻址限制,其单盘的读写性能仅为120 IOPS左右;由于数据在OSD上随机分布,因而单个硬盘上的IO负载不会固定在平均值上,而是总体呈现为正态分布,少数HDD上因正态分布的尾部效应,导致其IO负载远超平均值,以及远超单盘的性能阀值,造成拥堵。此外,分布式存储为保证数据完整性,必须定时进行数据完整性校验,即数据scrub/deep-scrub操作,而这些操作产生额外的IO负载,可能会加重磁盘阻塞现象。根据木桶效应原理,系统的性能取决于集群中表现最差的磁盘,因此个别慢盘严重拖累整个系统的性能,其可能的后果,就是带来大延迟、OSD假死,以及触发数据非必需的重建。
其次,三副本分布式存储还面临稳定性问题。当存储扩容、硬盘或节点损坏、网络故障、OSD假死、 Deep-scrub等多种因素叠加,可能导致多个OSD同时重建,引发重建风暴。在数据重建过程中,重建任务不仅消耗系统的内存、CPU、网络资源,而且还给存储系统带来额外的IO工作负载,挤占用户工作负载的存储资源。在此情形下,用户时常观察到,系统IO延迟大,响应迟钝,轻者引起业务中断,严重时系统可能会陷入不稳定的状态,OSD反复死机重启,甚至会导致数据丢失,系统崩溃。
此外,三副本分布式存储还面临数据丢失的风险。三副本最大可抵御两个HDD同时损坏。当系统处于扩容状态、或一个节点处于维护模式时,此时出现一个HDD故障,则该系统就会进入紧急状态,出现两个HDD同时故障,则可能导致数据丢失。对于一个具有一定规模的存储系统而言,同时出现两个机械硬盘故障的事件不可避免,尤其是当系统运行两三年之后,随着硬件的老化,出现Double、或Triple磁盘故障的概率急剧上升。此外,当系统出现大规模掉电或存储节点意外宕机时,也可能会导致多个机械硬盘同时出现损坏,危及三副本分布式存储的数据安全。
如何应对三副本隐患和风险,您预备好了吗?更多信息,请关注分布式存储的技术趋势(二):双重RAID。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。