NetApp继续推进除了传统存储业务之外的多元化战略,今天宣布在两年前推出的超融合基础设施上提供NetApp Cloud Data Services服务。
NetApp表示,还将扩展自己的云管理平台功能,使客户能够跨公有云扩展持久存储,并更好地控制他们管理和云服务付费的方式。超融合基础设施(HCI)是一种将存储、计算和网络整合到一个系统使其更高效、更快纵向扩展的系统。
NetApp云业务总经理Anthony Lye表示,目前这个只在NetApp自己超融合基础设施上提供的本地服务虽然市场份额极小,但未来将进一步扩大覆盖范围。
他说:“我们是一家开放的公司,我们超融合基础设施的架构采用了标准的虚拟机,因此可以在任何本地虚拟机环境中使用。”目前被广泛使用的虚拟机(例如VMware虚拟机)是一种用软件模拟以提高效率和灵活性的计算机。
NetApp一直在从传统存储硬件提供商向具有云专业能力的多元化数据管理厂商和转型,而且这一过程颇为曲折。最近NetApp的股票就像是坐过山车波动较大,而且上个月NetApp公布的第四财季盈利情况也令人失望。
但NetApp高管们表示,这一战略正在取得成效并将在今年帮助公司恢复增长。Lye说:“我们有数十家客户每年支付数百万美元购买我们的云服务。”
Cloud Data Services是一套让客户可以用来管理公有云存储和数据的工具,它可以通过分析帮助客户优化使用和成本。自2016年底以来,NetApp一直在不断完善这些服务,现在可以这些服务已经可以在AWS、微软和谷歌的公有云平台上运行了。在今天NetApp的发布之后,同样的服务现在也可以运行在NetApp超融合基础设施上了。Lye说:“因此,你现在可以在私有云上运行和公有云一样的服务了。”
最初在超融合基础设施上实施的包括Kubernetes Service on NetApp HCI软件套件,它结合了自动化Kubernetes部署引擎、应用市场和应用编排引擎,让客户可以使用这些引擎在本地设备和云之间移动工作负载。Kubernetes是一个用于管理容器的开源软件平台,而容器是可以在多个平台上移动的独立软件环境。
此外NetApp还发布了Cloud Volumes托管服务,该服务支持大规模的网络文件系统和服务器消息块存储,以及内置数据保护功能。
Lye表示,这个Kubernetes服务“让你能够将100%兼容[Cloud Native Computing Foundation]Kubernetes到公有云上”。该软件提供群集配置和生命周期管理功能,“一旦构建了代码并将其放入存储库中,我们就拥有了扩展、修复、测试和运行应用所需的所有工具”,并作为一项服务提供给客户。
NetApp的Cloud Insights监控和优化工具提供从物理层到应用层的基础架构监控工具,监控响应时间、容量、虚拟机性能和服务网格状况等指标。Lye表示:“你可以看到并管理所有云实例,还可以捆绑到各种基础设施和应用服务,看到这些基础设施和应用服务的性能表现。”
此外,与用于管理微服务的Istio服务网格集成,意味着用户现在可以跨环境联合群集用于像“金丝雀测试”这样的目的了,在这种情况下,代码更改被推送到少量实时服务器上,用于评估实时服务的准备情况。
Lye说:“我可以使用Istio建立版本1和版本2之间的关系,将流量路由到版本2应用并控制可用的流量,然后可以在多个云中做到这一点。”
目前所有软件均以服务的形式提供了,NetApp已经在其网站上发布大部分产品的定价信息。
好文章,需要你的鼓励
在技术快速发展的时代,保护关键系统越来越依赖AI、自动化和行为分析。数据显示,2024年95%的数据泄露源于人为错误,64%的网络事件由员工失误造成。虽然先进的网络防御技术不断发展,但人类判断仍是最薄弱环节。网络韧性不仅是技术挑战,更是人员和战略需求。建立真正的韧性需要机器精确性与人类判断力的结合,将信任视为战略基础设施的关键要素,并将网络韧性提升为国家安全的核心组成部分。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。
自计算机诞生以来,人们就担心机器会背叛创造者。近期AI事件包括数据泄露、自主破坏行为和系统追求错误目标,暴露了当前安全控制的弱点。然而这种结果并非不可避免。AI由人类构建,用我们的数据训练,在我们设计的硬件上运行。人类主导权仍是决定因素,责任仍在我们。
360 AI Research团队发布的FG-CLIP 2是一个突破性的双语精细视觉语言对齐模型,能够同时处理中英文并进行精细的图像理解。该模型通过两阶段训练策略和多目标联合优化,在29个数据集的8类任务中均达到最先进性能,特别创新了文本内模态对比损失机制。团队还构建了首个中文多模态评测基准,填补了该领域空白,为智能商务、安防监控、医疗影像等应用开辟新可能。