今天互联网应用给生活带来的便利大家有目共睹。而带来便利的背后是IT架构的复杂化以及数据面临的管理问题。
这是因为在互联网发展过程中,一方面企业业务模式发生着变化,由过去的封闭式、单个的业务模式向开放的融合的互联网业务演进。一方面数据爆炸式的增长,让企业IT架构发生了巨大的改变,企业的IT架构从孤立的、集中式的架构向着云化的、分布式架构的演进。
数据的爆炸式增长必然会产生很多问题,比如传统企业面临的数字化转型问题,比如因为数字化进程不同而对于不同业务产生的数据孤岛问题,比如互联网开放带来的海量数据安全问题。
当企业面临着多种应用、海量数据、异构环境的同时,到底有没有一些可量化的解决方案来告诉企业应该怎么做?基于此,至顶网希望通过撮合业内专家来探讨这些问题,希望通过专家们的专业探讨来解己之惑,解人之惑。
为此我们邀请了知名企业CIO、IBM资深系统架构师以及媒体总编一起来论道多云时代的数据管理,系统性的理清从数据安全的灵活可靠的IT架构到不同数据的存储问题再到整个数据的统一管理等问题。
一朵云能解决企业面临的问题吗?
随着公有云已经日益普及,技术也日趋成熟,很多企业会提出这么一个问题?公有云能包治百病吗?或者我的业务放在一朵云上就可以了?
如果公有云这么厉害,为什么调查机构IDC调查的结果是,到2024年,90%的企业要采用集成的混合多云工具和策略来支持不同的应用?
既要安全又要灵活可靠的IT架构如何实现?
现在大家都面临一个困惑,就是数据安全问题,IT技术发展这么快,按理说我们的安全体系应该越来越厉害,那现在是一个情况,就是所有的互联网企业都受到过攻击,所有的行业的客户的安全问题越来越突出。大家都在谈想得到一个平衡,就是我既要确保数据安全,又希望我的IT架构是灵活的。这怎么听起来就是一个矛盾的状态啊?这个矛盾有解吗?
如何做到数据存储因地制宜,让不同的数据放到最适合的地方?
公有云上的存储空间近乎无限大,但是为什么某企业CIO会说出即使大数据平台搞不成,我也不会将核心数据放到云上?为什么某水果厂不会把数据分享给合作伙伴?
这么多数据,为什么管理起来这么困难?
基于多云环境,企业不仅面临IT架构的升级,同时不同的数据存储之后,也面临着数据的整合治理问题,是不是能够实现多云环境下的统一管理?目前构建一个统一管理平台需要注意什么?统一管理是不是很难?
是不是觉得此次专家论道很有看点?这里我可以剧透一下,比如如何管理各种碎片化数据,IBM提出通过全面、灵活的数据存储软件来解决。
比如IBM Spectrum Virtualize存储软件,多年来IBM Spectrum Virtualize一直是行业领先技术,目前能管理400多种异构存储品牌。
同时随着多云时代的到来,满足多云能力已经成为IBM Storage的优先考虑。这几年IBM Storwize存储作为IT基础架构的重要环节不断的进行更新升级。就像现在IBM推出的IBM Storwize V5000 Gen3 新一代系列产品,不仅是易于购买、易于使用、易于管理的入门级存储系统。同时提供了更强大的性能以及企业级的功能、可用性及可靠性。再结合IBM Spectrum Virtualize的灵活性和选择多样性,满足企业对于数据灵活可控的管理需求。
当然这仅仅是专家们探讨的冰山一角,如果您想了解更多精彩的内容,欢迎观看4月26日14:00 线上首播《面授机宜》第2季“柔合之道 存储的手艺”视频对话节目。
好文章,需要你的鼓励
YouTube开始推出肖像检测工具,帮助创作者识别和举报使用其面部特征的AI生成视频。该系统类似于版权检测机制,目前处于测试阶段,仅向部分创作者开放。用户需要提供政府身份证件照片和面部视频来验证身份。系统会标记疑似包含用户肖像的视频,但无法保证100%准确识别AI内容。YouTube将根据多项因素决定是否移除举报的视频。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。
谷歌宣布在AI Studio平台中引入"氛围编程"体验,让编程和非编程用户都能更轻松地开发应用程序。用户可通过简单提示生成可运行的应用,新功能包括应用画廊、模型选择器、安全变量存储等。平台还添加了模块化"超能力"功能和"手气不错"按钮来激发创意。完成的原型应用可一键部署到谷歌云运行平台。此次更新正值业界期待谷歌即将发布Gemini 3.0大语言模型。
中国人民大学研究团队开发了Tool-Light框架,通过信息熵理论解决AI工具使用中的过度调用、调用不足和过度思考问题。该框架采用熵引导采样和两阶段自演化训练,让AI学会合理使用外部工具。在10个推理任务测试中,Tool-Light显著提升了AI的效率和准确性,为AI工具集成推理提供了新的解决方案。