有分析师表示,XPoint和其他永久内存技术成为服务器设计标准的前景正在受到阻碍,因为这些部分成本太高。
因为这是小批量生产的,所以不会出现规模经济使其成本更低一些。
Object Analysis分析师Jim Handy在1月份的SNIA闪存高峰会上解释了这一点,并从内存层开始分析。
Objective Analysis内存层的幻灯片
这个图表显示了在一个以性能定义的领域的内存和存储技术,也就是带宽(垂直访问)和成本(横轴)。
从左到右有一个对角线,从底部的磁带(慢速低成本)到磁盘、SSD、DRAM和缓存层到L1缓存,这是图表上最快和也是成本最高的部分。
在任何时候任何点想要冲入内存层的新技术都要比它之下的技术性能更高,比其上的成本更低。
我们已经看到NVDIMM试图填补SSD-DRAM的差距,但普遍失败了——例如Diablo Technologies。
Handy表示,在2004年前后NAND也遭遇了同样的问题,在此之前SLC(1位/单元)规格下,要比DRAM(每GB成本)成本更高,尽管一个100毫米模片采用了44纳米工艺、可保存8GB的数据,相比之下同样的DRAM模片可保存4GB数据。两倍的数量意味着成本减半,但实际上并没有——因为没有足够的产量来实现规模经济。
Handy表示,2004年,NAND闪存晶圆的数量达到DRAM晶片数量的三分之一,我们看到了一个交叉点:
自从NAND和DRAM价格曲线分开之后,MLC(2位/单元)、TLC(3位/单元)和3D NAND(更多位/芯片)也加速了分离。
后来出现的永久内存(PM)技术的制造成本很高,因为它涉及到新材料和新工艺,这使其更加昂贵,这就延长了获得制造规模经济所需的时间。
制造更多,支持更多
对于XPoint来说,NAND、NVDIMM-N以及其他针对填补DRAM-NAND空白的永久内存技术带来的经验教训,就是其制造产量需要足够高以提供一个能够填补内存层图表上空白的性价比:
Handy认为,其制造量需要接近DRAM,还需要软件支持,特别是永久内存,要支持运行在Linux、Windows和VMware上。最初的PM占用是针对性能的,并且要求比NAND性能更高的速度和低于DRAM的价格。
Handy认为,在XPoint实现这一点之前是不会普及的。他表示,英特尔有足够的动力来实现这一目标。
评论
如果三星能够使其Z-SSD价格足够便宜,那么它可以比XPoint更快地填补内存层上的DRAM与SSD之间的空白,并防止XPoint成为主流,而三星在开发自己的后NAND永内存技术以赶超XPoint。
其次,与XPoint竞争的技术,如STT-RAM、ReRAM和相变内存都还在开发中,除非有一个实际的路径来制造影响力。这是一个严酷的世界。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。