有分析师表示,XPoint和其他永久内存技术成为服务器设计标准的前景正在受到阻碍,因为这些部分成本太高。
因为这是小批量生产的,所以不会出现规模经济使其成本更低一些。
Object Analysis分析师Jim Handy在1月份的SNIA闪存高峰会上解释了这一点,并从内存层开始分析。
Objective Analysis内存层的幻灯片
这个图表显示了在一个以性能定义的领域的内存和存储技术,也就是带宽(垂直访问)和成本(横轴)。
从左到右有一个对角线,从底部的磁带(慢速低成本)到磁盘、SSD、DRAM和缓存层到L1缓存,这是图表上最快和也是成本最高的部分。
在任何时候任何点想要冲入内存层的新技术都要比它之下的技术性能更高,比其上的成本更低。
我们已经看到NVDIMM试图填补SSD-DRAM的差距,但普遍失败了——例如Diablo Technologies。
Handy表示,在2004年前后NAND也遭遇了同样的问题,在此之前SLC(1位/单元)规格下,要比DRAM(每GB成本)成本更高,尽管一个100毫米模片采用了44纳米工艺、可保存8GB的数据,相比之下同样的DRAM模片可保存4GB数据。两倍的数量意味着成本减半,但实际上并没有——因为没有足够的产量来实现规模经济。
Handy表示,2004年,NAND闪存晶圆的数量达到DRAM晶片数量的三分之一,我们看到了一个交叉点:
自从NAND和DRAM价格曲线分开之后,MLC(2位/单元)、TLC(3位/单元)和3D NAND(更多位/芯片)也加速了分离。
后来出现的永久内存(PM)技术的制造成本很高,因为它涉及到新材料和新工艺,这使其更加昂贵,这就延长了获得制造规模经济所需的时间。
制造更多,支持更多
对于XPoint来说,NAND、NVDIMM-N以及其他针对填补DRAM-NAND空白的永久内存技术带来的经验教训,就是其制造产量需要足够高以提供一个能够填补内存层图表上空白的性价比:
Handy认为,其制造量需要接近DRAM,还需要软件支持,特别是永久内存,要支持运行在Linux、Windows和VMware上。最初的PM占用是针对性能的,并且要求比NAND性能更高的速度和低于DRAM的价格。
Handy认为,在XPoint实现这一点之前是不会普及的。他表示,英特尔有足够的动力来实现这一目标。
评论
如果三星能够使其Z-SSD价格足够便宜,那么它可以比XPoint更快地填补内存层上的DRAM与SSD之间的空白,并防止XPoint成为主流,而三星在开发自己的后NAND永内存技术以赶超XPoint。
其次,与XPoint竞争的技术,如STT-RAM、ReRAM和相变内存都还在开发中,除非有一个实际的路径来制造影响力。这是一个严酷的世界。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。