Quobyte公司首次公开发布了其在同名并行文件系统上运行MLPerf存储基准测试的结果,声称在关键的3D-Unet基准测试中取得了显著优势。
该基准测试是ML Commons去年首次推出的三项测试之一,用于衡量存储系统在模型训练期间的数据供应能力。
毫无疑问,这是确保昂贵且耗电的GPU得到充分利用的关键因素——目前GPU的利用率很少接近理想水平。
Quobyte表示:"在三个基准测试中,3D U-Net特别有趣,因为它最依赖于存储性能。"
正如Quobyte联合创始人兼首席执行官Bjorn Kolbeck所说,这是真正"考验和折磨存储系统"的测试。
Quobyte指出,要通过测试,"MLPerf存储要求利用率达到90%或以上。利用率直接转化为特定的吞吐量,因为它决定了工作负载发出IO请求的速度。"
"目标是以最少的存储资源集合(因为它们需要金钱、占地面积和能源)支持每个客户端8个GPU在高利用率(90%以上)下运行,"该公司补充道。
对于3D U-Net,"每个全速运行的模拟H100 GPU需要大约2.8 GBps的吞吐量。使用DGX的200G网络,这意味着最多只能保持7个GPU在90%以上的利用率。"
测试配置如何?
Quobyte的设置是一个八节点集群,通过2x100G RoCE网络连接,包含四台客户端机器(Supermicro)和四台服务器机器(Supermicro),每台配备4个PCI 4.0 NVM。
对于MLPerf存储v1.0.1版本,使用H100,Quobyte表示能够支持"每个客户端(每个DGX)6个GPU在90%效率下运行"。该公司的目标是通过配备更快CPU的客户端机器,将这一数字提升到7个GPU,并实现更高的利用率。
"在服务器端,我们通过四台通过200G RoCE连接的标准服务器提供这种性能。这种设置提供高可用性,并可以与更多DGX客户端线性扩展。"
Quobyte声称这使其成为MLPerf 3D-Unet测试中最快、最高效的文件系统,支持每台客户端机器最多的GPU数量。同样重要的是,该公司还声称实现了每性能单位最低的成本和能耗。
联合创始人兼首席技术官Felix Hupfeld说:"我们的不同之处在于在另一端需要多少资源来提供这种性能。饱和GPU所需的资源会转化为更多功耗、更多占地面积,当然还有更多成本。"
虽然英伟达在AI世界中备受关注,但Kolbeck表示存储至关重要,而基于NFS的系统从未为扩展而设计。
他继续说道,选择错误的系统,"你就无法获得GPU所需的效率,然后你就被这个解决方案困住了。"
"你在存储系统上花费数百万美元,却无法提供GPU所需的性能,基本上毁掉了GPU投资。"
MLPerf存储基准测试的新版本即将发布。虽然Quobyte没有参与去年的"官方"提交轮次,但该公司表示这次完全打算参与。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。