Quobyte公司首次公开发布了其在同名并行文件系统上运行MLPerf存储基准测试的结果,声称在关键的3D-Unet基准测试中取得了显著优势。
该基准测试是ML Commons去年首次推出的三项测试之一,用于衡量存储系统在模型训练期间的数据供应能力。
毫无疑问,这是确保昂贵且耗电的GPU得到充分利用的关键因素——目前GPU的利用率很少接近理想水平。
Quobyte表示:"在三个基准测试中,3D U-Net特别有趣,因为它最依赖于存储性能。"
正如Quobyte联合创始人兼首席执行官Bjorn Kolbeck所说,这是真正"考验和折磨存储系统"的测试。
Quobyte指出,要通过测试,"MLPerf存储要求利用率达到90%或以上。利用率直接转化为特定的吞吐量,因为它决定了工作负载发出IO请求的速度。"
"目标是以最少的存储资源集合(因为它们需要金钱、占地面积和能源)支持每个客户端8个GPU在高利用率(90%以上)下运行,"该公司补充道。
对于3D U-Net,"每个全速运行的模拟H100 GPU需要大约2.8 GBps的吞吐量。使用DGX的200G网络,这意味着最多只能保持7个GPU在90%以上的利用率。"
测试配置如何?
Quobyte的设置是一个八节点集群,通过2x100G RoCE网络连接,包含四台客户端机器(Supermicro)和四台服务器机器(Supermicro),每台配备4个PCI 4.0 NVM。
对于MLPerf存储v1.0.1版本,使用H100,Quobyte表示能够支持"每个客户端(每个DGX)6个GPU在90%效率下运行"。该公司的目标是通过配备更快CPU的客户端机器,将这一数字提升到7个GPU,并实现更高的利用率。
"在服务器端,我们通过四台通过200G RoCE连接的标准服务器提供这种性能。这种设置提供高可用性,并可以与更多DGX客户端线性扩展。"
Quobyte声称这使其成为MLPerf 3D-Unet测试中最快、最高效的文件系统,支持每台客户端机器最多的GPU数量。同样重要的是,该公司还声称实现了每性能单位最低的成本和能耗。
联合创始人兼首席技术官Felix Hupfeld说:"我们的不同之处在于在另一端需要多少资源来提供这种性能。饱和GPU所需的资源会转化为更多功耗、更多占地面积,当然还有更多成本。"
虽然英伟达在AI世界中备受关注,但Kolbeck表示存储至关重要,而基于NFS的系统从未为扩展而设计。
他继续说道,选择错误的系统,"你就无法获得GPU所需的效率,然后你就被这个解决方案困住了。"
"你在存储系统上花费数百万美元,却无法提供GPU所需的性能,基本上毁掉了GPU投资。"
MLPerf存储基准测试的新版本即将发布。虽然Quobyte没有参与去年的"官方"提交轮次,但该公司表示这次完全打算参与。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。