看似整个世界都在依赖 AI 来提升未来效率,但从可持续发展的角度来看,这对地球究竟意味着什么?
高盛研究估计,到 2027 年,全球数据中心对电力的需求将比 2023 年增长 50%,这部分源于 AI 驱动应用和工作负载的激增、大语言模型(LLM)的使用以及支撑它们的大规模计算集群。
这很可能会给以绿色 IT 和碳减排为核心的企业可持续发展举措带来巨大压力。数据中心的根本任务是以更少的电力 —— 或至少不比用较小数据量处理时所用电力更多 —— 来存储、传输和处理更多数据。
这绝非易事,预计将是一段需要多年努力的漫长旅程。 Infinidat 认为,一个极好的起点便是那些安全托管所有信息的存储系统。您可以观看这段视频,听 Infinidat 首席市场官 Eric Herzog 与 The Register 的 Tim Philips 讨论公司如何计划为服务提供商和大型企业解决存储可持续性难题。
然而,这不仅仅是为了满足董事会对可持续性的期待和彰显绿色资质。数据中心运营商仍需确保收支平衡,这意味着绿色 IT 必须同时具备降低电力、制冷、回收以及数据托管设施保持正常运营所需的其他各项资源和流程成本的双重优势,同时最大限度地减少客户和利益相关者的停机时间。简而言之,只有配备合适的存储基础设施,才能在环保和经济效益之间寻找平衡。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。