Pure Storage 与 Nvidia 展开合作,使现有和新的 FlashBlade 客户能够为运行在 Nvidia AI 数据平台上的 AI 模型提供数据存储支持。
尽管 Pure 最近发布了可扩展性能和容量超越现有 FlashBlade 产品的分离式架构 FlashBlade//EXA 技术,但该公司仍确保了与 Nvidia 新型 AI 数据平台的兼容性。通过采用参考设计和认证,FlashBlade 客户可以与 Nvidia 的 Blackwell GPU 进行集成 —— 通过 BlueField-3 网卡、Spectrum-X 网络、NIM 和 NeMo Retriever 微服务以及 AIQ 蓝图传输数据。
Nvidia 存储网络技术副总裁 Rob Davis 表示:"通过将 Nvidia AI 数据平台功能集成到 Pure Storage FlashBlade 中,企业可以为 AI 代理提供近实时的业务数据,从而实现新水平的个性化客户服务、运营效率和前所未有的生产力。"
Pure 支持其 FlashBlade 产品的 AI 数据平台参考设计,现已通过认证成为 Nvidia 合作伙伴网络云合作伙伴参考架构的高性能存储 (HPS) 平台,包括配备 B200 或 H200 GPU 的 HGX 系统。同时还获得了 Nvidia 认证存储合作伙伴的基础级和企业级认证,确认 Pure FlashBlade 可以作为 Nvidia 风格 AI 工厂中的存储组件。
基础级是 Nvidia 存储合作伙伴的入门点,验证其 AI 基础设施在训练较小的大语言模型 (LLM)、推理任务和初始检索增强生成 (RAG) 工作流方面的基准性能和兼容性。企业级则针对大规模 AI 部署,为 AI 工厂提供动力,处理智能 AI 和其他生成式 AI 应用的海量数据集。
Pure 为与 Cisco 服务器和网络构建的融合 FlashStack 系统提供存储支持。FlashStack 客户获得了与 Nvidia AI 数据平台集成的明确路径。
Pure 首席技术官 Rob Lee 断言:"将 Nvidia AI 数据平台整合到 FlashBlade 中提供了客户所需的 AI 就绪存储",并补充说:"我们最近获得的 Nvidia 认证证实了 Pure Storage 正在支持 AI 模型所需的速度和规模。"
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。