Volumez 已更新其面向容器化应用的云端块存储配置服务,通过其数据基础设施即服务 (DIaaS) 产品来支持生成式 AI。
该公司表示,其技术可以最大化 GPU 利用率并实现 AI 和机器学习 (ML) 流水线的自动化。现有的数据传输和 AI/ML 基础设施部署流程常常受到存储效率低下、GPU 利用率不足、资源过度配置、系统性能不平衡、成本增加、管理复杂以及工具集成度差等问题的影响,这些都会消耗 AI 团队的带宽并延迟项目进度。
Volumez 的首席产品和业务官 John Blumenthal 在 1 月份硅谷举行的 IT Press Tour 会议上指出,AI/生成式 AI 工作负载需要在密集的基础设施中集中计算和存储能力。这样可以在减少硬件扩张的同时实现可持续性、成本效益和能源优化。
Volumez DIaaS 建立在对云服务提供商基础设施即服务 (IaaS) 产品的深入理解之上,旨在为 AI 工作负载创建均衡的基础设施。这包括基于声明式和组合式 NVMe/TCP 实例的存储基础设施。它使用 Linux 内置服务,且数据路径中没有存储控制器。
背景是像 AWS 和 Azure 这样的公有云出租计算和存储资源,它们并不会主动优化客户如何高效均匀地使用这些资源。Volumez 通过在公有云优化自身资源与客户需求之间的区域运营来盈利,帮助客户从性能、成本和简单运维方面优化这些资源的使用效率。
如图表所示,Volumez 为其块存储提供了比 AWS 实例更好的性价比:
它可以从数据科学家的笔记本电脑上设置 AWS 或 Azure 数据基础设施,将 Volumez 作为 PyTorch 库导入并自动计算存储基础设施需求。
Volumez 表示,MLPerf Storage 基准测试显示其基础设施表现良好。
Blumenthal 表示,AI 工作负载需要在可承受的成本下平衡高容量、高带宽和高性能,他声称 Volumez 可以做到这一点。他表示这提高了 GPU 利用率 - 减少了数据等待时间 - 从而提升了基础设施的训练和推理效率。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。