根据 Xinnor 发布的一份案例研究 [PDF],新加坡一所知名大学通过采用 Xinnor 的 xiRAID 存储技术,显著提升了其 AI 研究速度。
为支持持续性研究工作,这所未具名大学部署了包括 Nvidia 在内的多个 GPU 和计算系统。
该校的部署方案支持医疗保健和自然语言处理等领域的高级 AI 项目,并配备了 BeeGFS 客户端和服务器集群。BeeGFS 是一个为高性能计算开发的并行文件系统,包含分布式元数据架构,提供可扩展性和灵活性。
在存储需求方面,该大学要求具备快速数据访问能力、数据保护、易于部署和管理、成本优化,以及能够根据未来客户端增长和性能需求进行扩展的能力。
为满足这些要求,由 Xinnor 本地合作伙伴 On Demand System (ODS) 设计的存储方案通过两个 100Gb InfiniBand 端口,实现了 24.7Gbit/秒的顺序读取性能。
该基础设施包含两个服务器节点,每个节点配备 24 个 NVMe 驱动器,并由 xiRAID 提供保护和加速。这种配置不仅满足了所需吞吐量,还确保了数据保护和未来扩展的可能性。
软件驱动的 xiRAID 技术采用先进算法提供冗余和容错能力,即使在多个驱动器同时故障的情况下也能确保数据安全。针对未来的性能需求,该大学可以通过增加 InfiniBand 卡来提升性能。
Xinnor 首席营收官 Davide Villa 表示:"xiRAID 能够实现接近完美的资源利用率并最大化 NVMe 性能,这对学术研究来说是一个突破性进展。我们与 ODS 的合作展示了软件定义 RAID 如何满足 AI 和高性能计算工作负载的严格要求,同时优化成本并简化部署。"
On Demand System 创始人 Rakesh Sabharwal 补充道:"通过将 xiRAID 作为解决方案的核心,我们帮助该大学在研究和创新领域突破了界限。xiRAID 与 BeeGFS 的无缝集成为大学提供了可靠、高性能的存储基础,完全符合大学的发展愿景。"
好文章,需要你的鼓励
这篇研究论文揭示了多模态大语言模型(MLLMs)存在严重的模态偏差问题,即模型过度依赖文本信息而忽视图像等其他模态。研究团队通过理论分析和实验证明,这种偏差主要源于三个因素:数据集不平衡、模态骨干能力不对称以及训练目标设计不当。他们提出了系统的研究路线图和解决方案,包括增强视觉模态在数据集中的贡献、改变模型关注点和应用偏好优化策略。未来研究方向则包括开发更客观的评估指标、探索更多模态组合中的偏差问题以及应用可解释AI技术深入分析偏差机制。
ComfyMind是香港科技大学研究团队开发的一个协作式AI系统,旨在解决当前开源通用生成系统面临的稳定性和规划挑战。该系统基于ComfyUI平台,引入了两项关键创新:语义工作流接口(SWI)和带本地反馈执行的搜索树规划机制。SWI将低级节点图抽象为语义函数,而搜索树规划将生成过程视为分层决策任务。实验表明,ComfyMind在ComfyBench、GenEval和Reason-Edit三个基准测试中均大幅超越开源基线,并达到与GPT-Image-1相当的性能,为开源通用生成AI开辟了新路径。
这项研究介绍了一种名为"热带注意力"的新型注意力机制,专为解决神经网络在组合算法推理中的困境而设计。传统注意力机制使用softmax函数产生平滑的概率分布,无法精确捕捉组合算法所需的锐利决策边界。
这项研究揭示了RAG系统中位置偏见的真实影响——虽然在受控环境中明显存在,但在实际应用中却微不足道。研究人员发现,先进的检索系统不仅会找出相关内容,还会将具有干扰性的段落排在前列,超过60%的查询中至少包含一个高度干扰段落。由于相关和干扰内容同时出现在检索结果前列,位置偏见对两者都有惩罚作用,从而抵消了偏见效应。因此,基于位置偏好的复杂排序策略并不比随机排序更有效,这一发现将优化方向从段落排序重新导向检索质量提升和模型抗干扰能力增强。