戴尔利用面向人工智能工厂工作负载的全栈组件增强了PowerScale横向扩展集群文件系统阵列。
我们曾报道过VAST Data的人工智能堆栈方法和NetApp针对ONTAP的人工智能架构开发项目。现在,戴尔正在推出自己的全面人工智能堆栈产品,从PowerScale硬件和软件到具有大规模数据源摄取、矢量化和元数据处理功能的Data Lakehouse。这伴随着其PowerEdge XE9712(Nvidia GB200)和 M7725(水冷式 AMD Epyc)服务器以及基于 OCP 的水冷式集成机架 IR7000 系统,它们为这些人工智能工厂产品提供了计算能力和机架外壳。
戴尔基础架构解决方案集团总裁Arthur Lewis表示: “当今的数据中心无法满足人工智能的需求,这就需要采用模块化、灵活高效设计的高密度计算和液体冷却创新技术。这些新系统可提供企业所需的性能,使其在快速发展的人工智能领域保持竞争力。
PowerScale系统实际上是直接连接存储的PowerEdge服务器,使用OneFS操作系统。这些系统可以由3到252个节点组成集群。PowerScale现在支持200 Gbps以太网和InfiniBand前端网络,将以前的网络速度提高了一倍,吞吐量增加了63%。
OneFS现在支持61TB QLC(4bits/cell)固态硬盘来提高容量,比以前最大30.72 TB的硬盘容量提高了近一倍。此外,OneFS还为Data Lakehouse提供了元数据导出功能,并增强了软件功能,简化了向 Elasticsearch 数据库导出元数据的过程,从而提高了查询效率。跨地理分布集群的元数据可以组合起来,提供全局视图。
Data Lakehouse可以将这些元数据与从其他联合来源获取的其他数据结合起来。它将支持Iceberg等开放式表格格式,并将扩展到支持矢量数据库。此外,它还能从文件中提取内容元数据,增强其文件级元数据,并实现全上下文搜索。
Data Lakehouse可对Elasticsearch和开放格式扫描进行本地查询。其目的是通过使用SQL、矢量、词法和语义搜索数据使查询响应更加准确。
即将推出的戴尔文档加载器适用于Nvidia NeMo服务和检索增强生成(RAG)框架,旨在帮助客户缩短数据湖摄取数据的时间,降低计算和GPU成本。
戴尔表示,戴尔Data Lakehouse数据管理平台的增强功能可节省客户的时间,并通过灾难恢复、自动模式发现、全面的管理API和自助式全栈升级改善运营。
该公司宣布推出新服务,帮助PowerScale-Data Lakehouse客户,包括数据编目优化服务(Optimization Services for Data Cataloging)和数据管道实施服务(Implementation Services for Data Pipelines)。
戴尔生成式人工智能解决方案与英特尔合作,为人工智能部署提供联合设计、测试、验证、预配置和灵活的平台。这些解决方案采用配备英特尔Gaudi 3 AI加速器的PowerEdge XE9680 服务器,以及戴尔存储、网络、服务和开源软件栈。这些平台面向内容创建、数字助理、设计和数据创建、代码生成以及其他的生成式人工智能工作负载。
上市时间
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。