英特尔子公司Silicon Mobility发布最新OLEA U310 SoC,显著提升电动汽车的整体性能,简化设计和生产流程,并拓展SoC服务,确保可以在各种EV充电平台中无缝运作。
在全球范围内,电动汽车的高昂售价仍然是影响潜在买家下单的最大障碍之一。电动汽车目前的制造成本高于传统燃油汽车的主要原因,是先进的电池和电机技术所带来的昂贵成本。市面上近期的解决方案是通过车辆层面的节能,包括改进与电动汽车充电基础设施的整合,来提升现有电池技术的效率。
Silicon Mobility在行业中率先推出集硬件和软件于一体的完整解决方案。OLEA U310经过专门设计,可与分布式软件相结合,满足电气架构中动力系域控制的需求。基于独特的混合和异构架构,单个OLEA 310 FPCU可替代一个系统组合中的最多6个标准微控制器,来并行控制逆变器、电机、变速箱、DC-DC转换器以及车载充电。使用310 FPCU,OEM和Tier 1供应商能够同时实现对多个不同功率和能量功能的实时控制。除了物料清单(BoM)的减少,早期数据显示,与现在的电动汽车相比,在相同功率下,OLEA 310的使用可将能效提高5%,电机尺寸缩小25%,冷却需求减少35%,无源元件尺寸缩小30倍。
Silicon Mobility全新解决方案的推出,让电动汽车厂商能够设计出性能卓越、续航里程更远、生产成本可能更低的软件定义电动汽车,因为需要集成的元件数量减少了。这一全新解决方案与英特尔汽车业已推出的AI增强型软件定义汽车(SDV)SoC系列相结合,将共同推动行业向全电动和软件定义的未来转型。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。