超融合基础设施软件提供商Nutanix宣布,其最近一个季度的营收创下历史新高、连续第八年保持增长,并首次达到20亿美元的年化收入水平。
截至10月31日的上季度,该公司收入为5.111亿美元,同比增长18%,亏损额为1590万美元,大幅低于去年同期的9910万美元亏损。新增客户380家,累计客户达到24930家。此外,Nutanix还启动了股票回购计划以提振其股价。
Nutanix公司总裁兼CEO Rajiv Ramaswami表示,“我们第一季度的业绩表现强劲,结果也超出了我们的预期。第一季度充满不确定性的宏观背景基本没有好转。”
公司CFO Rukmini Sivaraman也补充道,“2024年第一季度的表现相当不错,我们的所有指标都超出了预期上限。第一季度追加与扩展销售(ACV)额为2.87亿美元,高于2.6至2.7亿美元的预期区间,同比增长达24%。”
凭借件8月售出的GPT-in-a-box一体式系统,Nutanix在美国联邦政府业务方面的表现也强于预期。此外,Nutanix与思科的合作也迎来良好开端,思科已决定取消自家HyperFlex HCI产品,转而代售Nutanix方案。Ramaswami表示,Nutanix“在这款新产品上取得胜利,吸引到了那些原本打算购买思科HyperFlex的客户。”
但他在财报电话会议上也保持了谨慎的态度:“我们的渠道需要六到九个月时间才能完成交接。所以预计今年之内,由思科引流的客户可能不会太多。”
尽管宏观环境与上个季度相比无甚变化,但Sivaraman表示“与去年同期相比,我们发现平均销售周期略有延长。”

财务摘要
Ramaswami希望“到2027财年,ARR复合年增长率能保持在20%左右,并在2027财年产生7到9亿美元的自由现金流。”
Nutanix 2024年第二财季的收入预期为5.5亿美元(上下浮动500万美元),年增长率预计为13.1%。目前全年预期营收为21.1亿美元(上下浮动1500万美元),比上年中位数增长13.3%。Sivaraman指出,“尽管宏观环境存在不确定性,但我们的解决方案仍然拥有新的扩展机会。”相应的,Nutanix已经上调了2024财年的所有预期指标,包括营收、ACV销售额、非GAAP营业利润率、非GAAP毛利率以及自由现金流等。
另一项利好消息,就是Red Hat OpenShift将运行在Nutanix之上。Ramaswami提到,Red Hat在应用业务层与VMware存在竞争关系,而Nutanix在基础设施层与VMware同样有所交集,所以Red Hat与Nutanix天然站在统一战线。部分Nutanix客户也在使用OpenShift,包括全球2000强银行。亚太地区的一家2000强银行就选择了Nutanix,希望借此避免VMware在加入博通后的业务不确定性。由此看来,Nutanix本季度的强劲业务表现也在一定程度上得益于这种不确定性。
但长远态势究竟是好是坏,目前还很难说。毕竟而且部分VMware客户也签署了长期协议,不得转投Nutanix的怀抱。
Ramaswami也在财报电话会议上提到了这一点,表示“在担忧情绪的推动下,我们获得了大量机会,能够与更多潜在客户接洽交流。但是,很难预测这种态势能不能长期保持下去。”
总体而言,VMware竞争力减弱与思科退出HCI市场给了Nutanix巨大的机会空间。只要能够妥善把握,相信Nutanix将在未来几个季度、甚至几年之内保持积极的业务增长幅度。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。