戴尔认为,生成式AI将像当年的服务器虚拟化一样,通过颠覆性变革推动计算、网络和存储产品的销量增长。
戴尔公司多位高管在一场“专家问答”活动中向在场的金融分析师们静态,称生成式AI有望进一步扩大目前总值300亿美元的AI潜在市场,但没有给出具体增幅。
Jeff Clarke
戴尔公司副总裁兼联席COO Jeff Clarke指出,“生成式AI代表着一大战略拐点。它具有颠覆性,将改变整个游戏规则。”
AI总潜在市场以机器学习、深度学习和计算机视觉为基础。生成式AI则进一步带来大语言模型(LLM),其中包括面向制造业的计算机视觉、供应链应用的机器学习以及用于提高客户满意度的聊天机器人等示例。
生成式AI目前主要分为两大类:强调通用性的大规模多功能模型,以及由较小数据集训练而成、仅面向特定业务的领域模型。戴尔认为,后者可以依托较小的服务器和GPU集群完成训练,并通过单个服务器在边缘位置执行推理。
Clarke解释道,“我们将在边缘、数据中心和云端建立起AI设施;换句话说,业务体系中的每个角落都将落地一系列生成式AI解决方案。”
可以想见,这两种生成式AI类别都将推动相应的计算需求,除了内存、高速千兆以太网网络和存储设备之外,还包括架设在各训练服务器集群之间的InfiniBand互连和光纤通道。
Clarke指出,“为计算设施投喂素材的任务,将越来越多由数据驱动的大规模非结构化和对象存储基础设施负责完成……目前,CEO们的优先待办清单中普遍出现了四大生成式AI用例的身影:客户运营、内容创建与管理、软件开发、软件销售。”
在戴尔公司看来,生成式AI模型离不开来自结构化(块存储)和非结构化(文件+对象存储)数据源的数据。换言之,AI模型需要大量实时、近实时和归档数据,其中实时和近实时数据主要由闪存介质提供。需要注意的是,AI模型所需要的非结构化数据要明显多于结构化数据,而这些非结构化数据将被存储在超大规模的软件定义存储库内。
针对这方面需求,戴尔给出的方案就是搭载OneFS操作系统的PowerScale集群文件与对象存储方案。它能够同时满足本地和公有云环境下的需求,还配备面向公有云的APEX存储,可支持块数据和非结构化数据。
块存储主要由戴尔旗下横向扩展的PowerFlex超融合基础设施产品提供,该产品不使用VMware及其VSAN技术。至于非结构化文件和对象存储,则由刚刚提到的PowerScale打理。
而且在对象存储范畴之内,戴尔又进一步做了细分:面向边缘和小型部署场景的Object Scale,以及用于大规模对象部署的ECS。目前这两套方案均未登陆公有云环境。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。