戴尔认为,生成式AI将像当年的服务器虚拟化一样,通过颠覆性变革推动计算、网络和存储产品的销量增长。
戴尔公司多位高管在一场“专家问答”活动中向在场的金融分析师们静态,称生成式AI有望进一步扩大目前总值300亿美元的AI潜在市场,但没有给出具体增幅。
Jeff Clarke
戴尔公司副总裁兼联席COO Jeff Clarke指出,“生成式AI代表着一大战略拐点。它具有颠覆性,将改变整个游戏规则。”
AI总潜在市场以机器学习、深度学习和计算机视觉为基础。生成式AI则进一步带来大语言模型(LLM),其中包括面向制造业的计算机视觉、供应链应用的机器学习以及用于提高客户满意度的聊天机器人等示例。
生成式AI目前主要分为两大类:强调通用性的大规模多功能模型,以及由较小数据集训练而成、仅面向特定业务的领域模型。戴尔认为,后者可以依托较小的服务器和GPU集群完成训练,并通过单个服务器在边缘位置执行推理。
Clarke解释道,“我们将在边缘、数据中心和云端建立起AI设施;换句话说,业务体系中的每个角落都将落地一系列生成式AI解决方案。”
可以想见,这两种生成式AI类别都将推动相应的计算需求,除了内存、高速千兆以太网网络和存储设备之外,还包括架设在各训练服务器集群之间的InfiniBand互连和光纤通道。
Clarke指出,“为计算设施投喂素材的任务,将越来越多由数据驱动的大规模非结构化和对象存储基础设施负责完成……目前,CEO们的优先待办清单中普遍出现了四大生成式AI用例的身影:客户运营、内容创建与管理、软件开发、软件销售。”
在戴尔公司看来,生成式AI模型离不开来自结构化(块存储)和非结构化(文件+对象存储)数据源的数据。换言之,AI模型需要大量实时、近实时和归档数据,其中实时和近实时数据主要由闪存介质提供。需要注意的是,AI模型所需要的非结构化数据要明显多于结构化数据,而这些非结构化数据将被存储在超大规模的软件定义存储库内。
针对这方面需求,戴尔给出的方案就是搭载OneFS操作系统的PowerScale集群文件与对象存储方案。它能够同时满足本地和公有云环境下的需求,还配备面向公有云的APEX存储,可支持块数据和非结构化数据。
块存储主要由戴尔旗下横向扩展的PowerFlex超融合基础设施产品提供,该产品不使用VMware及其VSAN技术。至于非结构化文件和对象存储,则由刚刚提到的PowerScale打理。
而且在对象存储范畴之内,戴尔又进一步做了细分:面向边缘和小型部署场景的Object Scale,以及用于大规模对象部署的ECS。目前这两套方案均未登陆公有云环境。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。