在前面我们分析了三副本的潜在隐患,也介绍了双重RAID架构的工作原理与技术特点。双重RAID究竟能否有效解决三副本的缺陷?让我们从二者之间的对比开始。
故障修复时间更短,业务影响更小
硬盘损坏时,双重RAID机制优先通过节点内RAID恢复数据,该恢复机制可自动调节速度以避让工作负载,前端业务无感知。无需触发网络数据重建,从而有效地避免了网络重建风暴。
节点故障时,可通过迁移磁盘到另一台物理服务器,实现节点迁移(无需拷贝或重建数据)。SVM存储池上每个磁盘记载关于存储池构成的全部信息,分布式存储的vOSD的ID号及用户数据,保存在SVM存储池的虚拟卷上,自动随着SVM存储池的迁移从一台物理服务器迁移到另一台物理服务器,主机名及vOSD的ID号保存不变,实现快速节点修复。
容错性更强,可允许多节点同时有磁盘损坏
三副本分布式存储通过跨节点的副本保护,可有效防止单个或两个磁盘损坏对业务数据的影响,但是容错性受到限制,如在三副本的情况下,不同故障域内之间,最多只能允许2个节点有磁盘损坏,超出2个节点出现磁盘故障,则极有可能发生数据丢失,如图1所示。
图 1 三副本分布式存储多节点硬盘损坏导致数据丢失
铁力士分布式存储通过双重RAID 机制,能够将容错性提升一个数量级。如图2所示,以节点内RAID 10+节点间2副本为例,当每个节点都出现磁盘故障的时候,可以通过节点内RAID 分别修复,保障整个系统数据无丢失,业务无中断。

图 2 双重RAID容忍多节点磁盘损坏
数据持久性(Durability)高出一个数量级
下面通过具体数值来比较三副本与双重RAID的数据持久性(可靠性)。数据持久性指标可通过存储系统的AFR(Annual Failure Rate)来衡量。考虑一个1000个6TB硬盘的存储集群,每个机械硬盘的MTTF(Mean Time to Failure)为1000,000小时。在计算中需要运用两个著名的MTTF公式,一个是关于RAID6,其MTTF=(MTTF)*(MTTF)*(MTTF)/(N*(N-1)*(N-2)*MTTR), 另一个是关于RAID5,其MTTF=(MTTF)*(MTTF)/(N*(N-1)MTTR), 其中MTTR(Mean Time to Repair)是硬盘平均修复时间。
在三副本条件下,存储系统共有333组三副本,每组三副本的MTTF相当于N=3的RAID6,在分布式并发修复的条件下,MTTR通常为3小时(每半小时修复1TB数据),因此每组三副本的MTTF =1000000*1000000*1000000/(3*2*1*3)=5.56x 1016 小时,而整个系统的MTTF = 5.56x 1016 /333 =1.67x 1014 小时。折算为AFR(一年共8760小时),AFR=8760/(1.67x 1014) =5.2x 10-11。
在双重RAID情况下,考虑节点内采用(2+1) RAID5,存储系统共有333组RAID5,为简化计算,考虑每组RAID对应于两个vOSD,12TB数据。据测算,RAID5的MTTR为30小时,每组RAID5 (vOSD)的MTTF=1000000*1000000/(3*2*30)=5.56x 109 小时。当一个RAID5组损坏时,由于vOSD在跨节点之间有镜像保护(其可靠性相当于N=2 RAID5),采用分布式并发修复12TB数据,每半小时修复1TB数据,需6小时,因此,其MTTR=(5.56x 109 )* (5.56x 109 )/(2*1*6)=2.58x 1018 小时。考虑到整个存储系统有333组RAID5, 因此整个系统的MTTF=2.58x 1018/333 =7,75x 1015 小时,相当于三副本MTTF的46倍。折算为AFR,双重RAID的AFR=8760/(7.75x 1015)= 1.1x 10-12 。
对比三副本和双重RAID的数据持久性,可见双重RAID的数据可靠性高于三副本一个数量级以上。
总结
铁力士分布式存储将传统磁盘阵列的RAID技术、存储虚拟化管理技术与分布式存储技术相结合,有效地解决了普通分布式存储面临的IO分布不均匀和木桶效应导致的性能缺陷,大幅度提升系统IOPS性能,并避免了普通分布式存储因网络重建风暴而可能导致的稳定性隐患。同时,双重RAID架构的数据可靠性高于三副本分布式存储一个数量级以上。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。