2020年,新冠疫情肆虐全球,
某制造厂商却订单满满,业务顺畅。
这一切要从两年前说起,
当时由于生产线全面升级,
随之而来的的是对原有的IT系统形成了挑战。
该工厂产品研发生产设计环节,
由 2D 图纸向 3D 图纸升级产生海量的数据,
二维图纸产生的数据量大概是 1M 的数据量,
而设计一个 3D 模型至少要 1G 的数据量,
数据存储扩展面临新的挑战。
同时该工厂面临着业务系统批处理的挑战,
包括 ERP 系统, PRM 系统, SAM 系统业务的激增,
给批处理月结的 IT 存储系统性能形成了挑战。
制造业对于 IT 系统高可用或者可靠性有非常大的要求,
因为 IT 系统的故障或者一个小灾难,
就可能造成生产环节的业务连续性中断。
IBM 为该制造企业提出软件定义存储的方式,
来解决 IT 升级的需求。
基于 IBM Spectrum Scale 构建的软件定义存储,
能够确保任何地点,数据安全,任何规模的混合云实现性能的提升,
并支持不同架构、不同应用的数据访问。
IBM 软件定义存储就能够提供灵活弹性的云化敏捷架构,
通过分布式存储架构满足了数据的开放性、多样性,
解决制造业在敏态业务中产生的海量数据存储及流转问题。
同时最新的 IBM Spectrum Scale 5.1版本,
基于更为简化的混合云的数据存储和数据访问和管理,
实现 AI 和大数据的存储功能,
IBM Spectrum Scale 5.1不仅实现混合云和容器的存储融合能力,
实现了 IBM Spectrum Scale、对象存储、NFS 存储之间
透明的数据访问和迁移。
最后,IBM 软件定义存储不仅满足了
智能制造在现有的业务系统对于混合云资源的需求。
同时利用 OpenShift + Cloud Packs 轻松连接混合云中的资源,
实现云原生应用的快速响应,
更好的支持未来新技术扩展、新应用开发。
想了解更多制造业的存储解决方案和详细的IBM存储功能请点击链接:http://www.zhiding.cn/special/IBM_2021_IT_infrastructure
咨询IBM专家:400 6692 039
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。