韩国科学技术院(KAIST)及其太字节互连与封装实验室(Tera)研究团队发布了未来四代高带宽内存(HBM)技术发展路线图,预计最高可达64 TBps带宽和24层堆叠结构,比HBM4性能提升50%。
目前最新的HBM4代产品带宽可达2 TBps,最大支持16层DRAM芯片堆叠,容量达64 GB。HBM标准由JEDEC(联合电子设备工程委员会)发布,首个HBM标准(JESD235)于2013年发布,随后的HBM2、HBM2E、HBM3和HBM3E版本在带宽、容量和效率方面不断改进。
在散热技术方面,HBM3和HBM4采用强制风冷(散热片/风扇)或强制水冷(D2C直接芯片冷却)技术。2029年推出的HBM5将采用浸没式冷却,而HBM7和HBM8将使用嵌入式冷却技术,将散热机制直接集成到芯片内部或芯片附近。
在封装技术上,HBM4和HBM5将使用微凸点(MR-MUF)芯片堆叠技术,HBM6至HBM8则采用无凸点铜对铜直接键合技术,以实现更高密度、更好性能和信号完整性。
英伟达的Feynman(F400)加速器计划采用HBM5技术,整个GPU的HBM5容量将达到400-500 GB,预计2028/2029年发布。
2032年的HBM6将采用主动/混合(硅+玻璃)中介层技术,最大堆叠层数从HBM5的16层增至20层,单堆容量可达96-120 GB。
2035年的HBM7将支持最高24层堆叠,容量达160-192 GB,带宽24 TBps,是HBM6的三倍。2038年的HBM8同样支持24层堆叠,带宽提升至64 TBps,容量增至200-240 GB。
HBM8可能采用双面中介层设计,一面安装HBM,另一面可安装HBM、LPDDR内存或HBF(高带宽闪存)。HBF结合了HBM的高带宽特性和3D NAND的大容量优势。其中HBM芯片容量240 GB,LPDDR芯片480 GB,HBF芯片可达1024 GB。
需要注意的是,这只是技术发展路线图,时间越久远确定性越低。最终技术细节还需等待JEDEC发布正式规范后才能确认。
好文章,需要你的鼓励
还在为渲染一个3D模型等上几小时吗?还在纠结移动办公就得牺牲性能吗?当AI遇上专业工作站,传统设计流程的游戏规则正在被改写。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。