看似整个世界都在依赖 AI 来提升未来效率,但从可持续发展的角度来看,这对地球究竟意味着什么?
高盛研究估计,到 2027 年,全球数据中心对电力的需求将比 2023 年增长 50%,这部分源于 AI 驱动应用和工作负载的激增、大语言模型(LLM)的使用以及支撑它们的大规模计算集群。
这很可能会给以绿色 IT 和碳减排为核心的企业可持续发展举措带来巨大压力。数据中心的根本任务是以更少的电力 —— 或至少不比用较小数据量处理时所用电力更多 —— 来存储、传输和处理更多数据。
这绝非易事,预计将是一段需要多年努力的漫长旅程。 Infinidat 认为,一个极好的起点便是那些安全托管所有信息的存储系统。您可以观看这段视频,听 Infinidat 首席市场官 Eric Herzog 与 The Register 的 Tim Philips 讨论公司如何计划为服务提供商和大型企业解决存储可持续性难题。
然而,这不仅仅是为了满足董事会对可持续性的期待和彰显绿色资质。数据中心运营商仍需确保收支平衡,这意味着绿色 IT 必须同时具备降低电力、制冷、回收以及数据托管设施保持正常运营所需的其他各项资源和流程成本的双重优势,同时最大限度地减少客户和利益相关者的停机时间。简而言之,只有配备合适的存储基础设施,才能在环保和经济效益之间寻找平衡。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。