看似整个世界都在依赖 AI 来提升未来效率,但从可持续发展的角度来看,这对地球究竟意味着什么?
高盛研究估计,到 2027 年,全球数据中心对电力的需求将比 2023 年增长 50%,这部分源于 AI 驱动应用和工作负载的激增、大语言模型(LLM)的使用以及支撑它们的大规模计算集群。
这很可能会给以绿色 IT 和碳减排为核心的企业可持续发展举措带来巨大压力。数据中心的根本任务是以更少的电力 —— 或至少不比用较小数据量处理时所用电力更多 —— 来存储、传输和处理更多数据。
这绝非易事,预计将是一段需要多年努力的漫长旅程。 Infinidat 认为,一个极好的起点便是那些安全托管所有信息的存储系统。您可以观看这段视频,听 Infinidat 首席市场官 Eric Herzog 与 The Register 的 Tim Philips 讨论公司如何计划为服务提供商和大型企业解决存储可持续性难题。
然而,这不仅仅是为了满足董事会对可持续性的期待和彰显绿色资质。数据中心运营商仍需确保收支平衡,这意味着绿色 IT 必须同时具备降低电力、制冷、回收以及数据托管设施保持正常运营所需的其他各项资源和流程成本的双重优势,同时最大限度地减少客户和利益相关者的停机时间。简而言之,只有配备合适的存储基础设施,才能在环保和经济效益之间寻找平衡。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。