看似整个世界都在依赖 AI 来提升未来效率,但从可持续发展的角度来看,这对地球究竟意味着什么?
高盛研究估计,到 2027 年,全球数据中心对电力的需求将比 2023 年增长 50%,这部分源于 AI 驱动应用和工作负载的激增、大语言模型(LLM)的使用以及支撑它们的大规模计算集群。
这很可能会给以绿色 IT 和碳减排为核心的企业可持续发展举措带来巨大压力。数据中心的根本任务是以更少的电力 —— 或至少不比用较小数据量处理时所用电力更多 —— 来存储、传输和处理更多数据。
这绝非易事,预计将是一段需要多年努力的漫长旅程。 Infinidat 认为,一个极好的起点便是那些安全托管所有信息的存储系统。您可以观看这段视频,听 Infinidat 首席市场官 Eric Herzog 与 The Register 的 Tim Philips 讨论公司如何计划为服务提供商和大型企业解决存储可持续性难题。
然而,这不仅仅是为了满足董事会对可持续性的期待和彰显绿色资质。数据中心运营商仍需确保收支平衡,这意味着绿色 IT 必须同时具备降低电力、制冷、回收以及数据托管设施保持正常运营所需的其他各项资源和流程成本的双重优势,同时最大限度地减少客户和利益相关者的停机时间。简而言之,只有配备合适的存储基础设施,才能在环保和经济效益之间寻找平衡。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。