Pure Storage 与 Nvidia 展开合作,使现有和新的 FlashBlade 客户能够为运行在 Nvidia AI 数据平台上的 AI 模型提供数据存储支持。
尽管 Pure 最近发布了可扩展性能和容量超越现有 FlashBlade 产品的分离式架构 FlashBlade//EXA 技术,但该公司仍确保了与 Nvidia 新型 AI 数据平台的兼容性。通过采用参考设计和认证,FlashBlade 客户可以与 Nvidia 的 Blackwell GPU 进行集成 —— 通过 BlueField-3 网卡、Spectrum-X 网络、NIM 和 NeMo Retriever 微服务以及 AIQ 蓝图传输数据。
Nvidia 存储网络技术副总裁 Rob Davis 表示:"通过将 Nvidia AI 数据平台功能集成到 Pure Storage FlashBlade 中,企业可以为 AI 代理提供近实时的业务数据,从而实现新水平的个性化客户服务、运营效率和前所未有的生产力。"
Pure 支持其 FlashBlade 产品的 AI 数据平台参考设计,现已通过认证成为 Nvidia 合作伙伴网络云合作伙伴参考架构的高性能存储 (HPS) 平台,包括配备 B200 或 H200 GPU 的 HGX 系统。同时还获得了 Nvidia 认证存储合作伙伴的基础级和企业级认证,确认 Pure FlashBlade 可以作为 Nvidia 风格 AI 工厂中的存储组件。
基础级是 Nvidia 存储合作伙伴的入门点,验证其 AI 基础设施在训练较小的大语言模型 (LLM)、推理任务和初始检索增强生成 (RAG) 工作流方面的基准性能和兼容性。企业级则针对大规模 AI 部署,为 AI 工厂提供动力,处理智能 AI 和其他生成式 AI 应用的海量数据集。
Pure 为与 Cisco 服务器和网络构建的融合 FlashStack 系统提供存储支持。FlashStack 客户获得了与 Nvidia AI 数据平台集成的明确路径。
Pure 首席技术官 Rob Lee 断言:"将 Nvidia AI 数据平台整合到 FlashBlade 中提供了客户所需的 AI 就绪存储",并补充说:"我们最近获得的 Nvidia 认证证实了 Pure Storage 正在支持 AI 模型所需的速度和规模。"
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。