本周,Kioxia 将旨在减少生成式 AI 系统中 DRAM 需求的 AiSAQ 技术作为开源软件发布。
AiSAQ(全称为"基于乘积量化的全存储式 ANNS")提供了一种针对 SSD 优化的"近似最近邻搜索" (ANNS) 算法。Kioxia AiSAQ 软件无需将索引数据存储在 DRAM 中,而是直接在 SSD 上进行搜索,从而为检索增强生成 (RAG) 提供可扩展的性能。
生成式 AI 系统需要大量的计算、内存和存储资源。Kioxia 表示:"虽然这些系统有潜力在各个行业推动变革性突破,但其部署通常成本高昂。" RAG 是 AI 的关键阶段,它通过公司或应用程序特定的数据来完善大语言模型 (LLM)。
RAG 的核心组件是一个向量数据库,它将特定数据累积并转换为用于检索的特征向量。RAG 还使用 ANNS 算法,该算法基于累积向量和目标向量之间的相似性来识别可改进模型的向量。Kioxia 表示:"为了使 RAG 有效,它必须能够快速检索与查询最相关的信息。"
传统上,ANNS 算法部署在 DRAM 中以实现这些搜索所需的高速性能。但 Kioxia 表示,AiSAQ 技术为十亿级数据集提供了一个"可扩展且高效"的 ANNS 解决方案,具有"可忽略的"内存使用量和"快速"的索引切换能力。
AiSAQ 的主要优势包括允许大规模数据库在不依赖有限 DRAM 资源的情况下运行,从而提高 RAG 系统的性能。它还消除了将索引数据加载到 DRAM 的需求,使向量数据库能够立即启动。这支持在同一服务器上在用户特定或应用程序特定的数据库之间切换,以实现高效的 RAG 服务交付。
它通过将索引存储在分布式存储中以实现多服务器共享,从而针对云系统进行了优化。这种方法可以针对特定用户或应用程序调整向量数据库搜索性能,并有助于在物理服务器之间迁移搜索实例。
Kioxia 欧洲首席技术官兼副总裁 Axel Stoermann 表示:"我们的 AiSAQ 解决方案为基于闪存 SSD 的生成式 AI 系统中的 RAG 应用提供了几乎无限的扩展可能。通过使用基于 SSD 的 ANNS,我们减少了对昂贵 DRAM 的依赖,同时满足了领先内存解决方案的性能需求,显著提升了大规模 RAG 应用的性能范围。"
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。