本周,Kioxia 将旨在减少生成式 AI 系统中 DRAM 需求的 AiSAQ 技术作为开源软件发布。
AiSAQ(全称为"基于乘积量化的全存储式 ANNS")提供了一种针对 SSD 优化的"近似最近邻搜索" (ANNS) 算法。Kioxia AiSAQ 软件无需将索引数据存储在 DRAM 中,而是直接在 SSD 上进行搜索,从而为检索增强生成 (RAG) 提供可扩展的性能。
生成式 AI 系统需要大量的计算、内存和存储资源。Kioxia 表示:"虽然这些系统有潜力在各个行业推动变革性突破,但其部署通常成本高昂。" RAG 是 AI 的关键阶段,它通过公司或应用程序特定的数据来完善大语言模型 (LLM)。
RAG 的核心组件是一个向量数据库,它将特定数据累积并转换为用于检索的特征向量。RAG 还使用 ANNS 算法,该算法基于累积向量和目标向量之间的相似性来识别可改进模型的向量。Kioxia 表示:"为了使 RAG 有效,它必须能够快速检索与查询最相关的信息。"
传统上,ANNS 算法部署在 DRAM 中以实现这些搜索所需的高速性能。但 Kioxia 表示,AiSAQ 技术为十亿级数据集提供了一个"可扩展且高效"的 ANNS 解决方案,具有"可忽略的"内存使用量和"快速"的索引切换能力。
AiSAQ 的主要优势包括允许大规模数据库在不依赖有限 DRAM 资源的情况下运行,从而提高 RAG 系统的性能。它还消除了将索引数据加载到 DRAM 的需求,使向量数据库能够立即启动。这支持在同一服务器上在用户特定或应用程序特定的数据库之间切换,以实现高效的 RAG 服务交付。
它通过将索引存储在分布式存储中以实现多服务器共享,从而针对云系统进行了优化。这种方法可以针对特定用户或应用程序调整向量数据库搜索性能,并有助于在物理服务器之间迁移搜索实例。
Kioxia 欧洲首席技术官兼副总裁 Axel Stoermann 表示:"我们的 AiSAQ 解决方案为基于闪存 SSD 的生成式 AI 系统中的 RAG 应用提供了几乎无限的扩展可能。通过使用基于 SSD 的 ANNS,我们减少了对昂贵 DRAM 的依赖,同时满足了领先内存解决方案的性能需求,显著提升了大规模 RAG 应用的性能范围。"
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。