Microsoft 研究人员提出了一种名为管理保留内存 (MRM) 的新概念 - 这是一种具有短期持久性的存储级内存 (SCM),专门针对 AI 基础模型工作负载进行 IO 优化。
Microsoft 首席研究软件工程师 Sergey Legtchenko 和其他研究人员在 Arxiv 上发表的论文中描述了 MRM,旨在解决 AI 集群中高带宽内存 (HBM) 的局限性。他们指出,HBM "由于多个原因对 AI 工作负载来说并不理想",它"在写入性能方面过度配置,但在密度和读取带宽方面配置不足,同时每比特能耗显著。由于制造复杂性,其成本也很高,良率低于 DRAM。"
研究人员表示,SCM 方案 - 如英特尔已停产的 Optane 以及潜在的 MRAM、ReRAM 或 PCM (相变存储器) 替代方案 - 都假定在内存 (需要持续供电刷新以保留数据的易失性 DRAM) 和存储 (长期保存数据,以年计) 之间存在明显的界限。
他们说:"这些技术传统上提供长期持久性 (10 年以上),但 IO 性能和/或耐久性较差。" 例如:"闪存单元的保留时间超过 10 年,但这是以牺牲每个存储单元的读写吞吐量为代价的,相比 DRAM 要低。这些特性意味着 DRAM 用作处理器的内存,而闪存用于二级存储。"
但从保留时间来看,这种界限实际上不必如此明显。保留时间存在一个从零到数十年甚至更长的连续谱。DRAM 在需要刷新之前确实会短暂保留数据。研究人员写道:"非易失性是存储设备的一个关键属性,但在存储单元层面上这个概念其实具有误导性。对所有技术而言,存储单元只是提供一个保留时间,这是一个从 DRAM 的微秒到多年的连续体。"
通过默认支持这种明显的内存-存储分界概念,"支撑 SCM 的技术被迫要实现非易失性,要求其保留时间达到十年或更长。不幸的是,实现这种高保留时间需要在写入和读取延迟、能源效率和耐久性等其他指标上做出权衡。"
对于像推理这样的 AI 工作负载来说,具有非易失性的通用 SCM 是不必要的。这类工作负载需要高性能的模型权重和 KV 缓存数据顺序读取,但写入性能要求较低。由于此类工作负载规模巨大,需要一个新的内存类别,因为 HBM 的每比特读取能耗太高,而且"成本高昂,良率挑战显著"。
Microsoft 研究人员表示,他们理论上的 MRM "与易失性 DRAM 不同,它可以在断电时保留数据,且不会在频繁的单元刷新中浪费能量,但与 SCM 不同,它并不针对长期保留时间。由于大多数推理数据无需长期保存,保留时间可以放宽到几天或几小时。作为回报,MRM 具有更好的耐久性,并致力于在读取吞吐量、能源效率和容量等关键指标上超越 DRAM (和 HBM)。"
他们指出:"由于 IO 是大规模且顺序的,因此不需要字节寻址",这表明块寻址结构就足够了。
研究人员正在理论上定义一个新的内存类别,表示在内存-存储层次结构中存在一个特定于 AI 基础模型的空白,可以用适当的半导体技术来填补。这"为这一应用领域开启了更好内存的计算机架构研究领域。"
论文中的图表"显示了现有内存/存储技术的耐久性与工作负载耐久性要求之间的比较。在适用的情况下,我们区分了现有设备中观察到的耐久性和技术所展示的潜力。"耐久性是指可以持续进行写入循环的时间长度。"HBM 在耐久性方面过度配置,而现有的 SCM 设备虽然不能满足耐久性要求,但底层技术具有实现这一目标的潜力。"
Microsoft 研究人员表示:"我们明确不局限于特定技术,而是强调一个机会空间。这是对从研究底层存储单元技术的人员,到思考内存控制器的人员,再到设计访问内存的软件系统的人员的行动召唤。为 AI 时代更好的内存而展开跨层级协作。"
他们总结道:"我们提出了一种可以与 HBM 共存的新型内存类别 - 管理保留内存 (MRM),它能够利用最初为 SCM 提出的内存技术,但通过权衡保留时间和写入吞吐量等指标,来改善这些 AI 工作负载所需的关键性能指标。通过放宽保留时间要求,MRM 有可能让现有提出的 SCM 技术提供更好的读取吞吐量、能源效率和密度。我们希望这篇论文能够真正开启对存储单元技术和内存芯片设计创新的新思维,专门针对 AI 推理集群的需求。"
好文章,需要你的鼓励
人工智能和数据安全公司Cyera宣布完成4亿美元后期融资,估值达90亿美元。此轮F轮融资由贝莱德领投,距离上次融资仅6个月。随着95%的美国企业使用生成式AI,AI应用快速普及带来新的安全挑战。Cyera将数据安全态势管理、数据丢失防护和身份管理整合为单一平台,今年推出AI Guardian扩展AI安全功能。
上海AI实验室开发RePro训练方法,通过将AI推理过程类比为优化问题,教会AI避免过度思考。该方法通过评估推理步骤的进步幅度和稳定性,显著提升了模型在数学、科学和编程任务上的表现,准确率提升5-6个百分点,同时大幅减少无效推理,为高效AI系统发展提供新思路。
SAP在2026年全国零售联盟大展上发布了一系列新的人工智能功能,将规划、运营、履约和商务更紧密地集成到其零售软件组合中。这些更新旨在帮助零售商管理日益复杂的运营,应对客户参与向AI驱动发现和自动化决策的转变。新功能涵盖数据分析、商品销售、促销、客户参与和订单管理等领域,大部分功能计划在2026年上半年推出。
MIT团队开发的VLASH技术首次解决了机器人动作断续、反应迟缓的根本问题。通过"未来状态感知"让机器人边执行边思考,实现了最高2.03倍的速度提升和17.4倍的反应延迟改善,成功展示了机器人打乒乓球等高难度任务,为机器人在动态环境中的应用开辟了新可能性。