BMC Software 发布了针对其大型机服务的数据存储和 AI 生产力增强功能。
根据 BMC 的说法,2025 年 1 月对 BMC AMI 产品组合的更新在开启大型机可能性方面"开创了新局面",它为最近宣布的 Cloud Data Sets (CDS) 添加了更多实质性内容。
BMC 在 2023 年 4 月收购了 Model9,并将其软件重新品牌化为 AMI Cloud。获得专利的 Cloud Data Sets 能够在不修改现有流程的情况下,直接访问本地或超大规模云服务商的对象存储。
"目前,在磁带和虚拟磁带库 (VTL) 上进行大型机数据的二级备份存储和检索既昂贵又耗时," BMC AMI 解决方案的营销副总裁 Priya Doty 表示。"BMC AMI Cloud Data 中的 CDS 功能提供了向对象存储的无缝过渡,这简化了备份和恢复流程,与传统解决方案相比可以节省成本。"
此外,通过 CDS,BMC AMI FDR (快速转储还原) 的当前用户现在可以将他们的磁带备份重定向到对象存储,无需直接访问存储设备 (DASD)、VTL 暂存或任何代码更改。BMC 表示,这将带来更快的备份速度、改善灾难恢复能力,并能够消除物理磁带和 VTL 存储的成本和基础设施需求。
去年,供应商在 BMC AMI DevX Code Insights 中引入了由 BMC AMI Assistant 支持的新 COBOL 代码解释功能。在生成式 AI 的驱动下,代码解释通过提供代码业务逻辑部分的简短摘要和代码逻辑流程的详细信息,赋予开发人员更强大的能力。
在 1 月的更新中,BMC AMI Assistant 现在包括"业内最广泛的语言支持",包括对 PL/I、JCL 和汇编语言编写的代码解释。BMC 表示,这有助于开发人员以"无与伦比的效率"理解、审查、扩展和测试大型机代码。
Java 在大型机上的使用正在增加,对改善应用程序性能的需求也随之增长。作为更新的一部分,新的 BMC AMI Strobe for Java 通过用户友好的网络界面,在单一工具中实现了"全面的"应用程序性能管理和分析。BMC AMI Strobe for Java 使开发人员能够"轻松识别"过度资源需求的来源,并在软件交付生命周期的早期阶段进行性能测试。
此外,由 BMC AMI Assistant 驱动的新型混合 AI 功能将 AI/ML 与生成式 AI 在 BMC AMI Ops Insight 中结合,简化了根本原因分析,有助于减少平均检测时间 (MTTD) 和平均解决时间 (MTTR)。新的交互式仪表板还允许用户根据其可观察性需求创建和个性化重点视图。
BMC 声称:"通过让系统程序员对他们看到的信息有更大的控制权,这些定制化的见解能够实现更快速和更智能的决策。"
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。