BMC Software 发布了针对其大型机服务的数据存储和 AI 生产力增强功能。
根据 BMC 的说法,2025 年 1 月对 BMC AMI 产品组合的更新在开启大型机可能性方面"开创了新局面",它为最近宣布的 Cloud Data Sets (CDS) 添加了更多实质性内容。
BMC 在 2023 年 4 月收购了 Model9,并将其软件重新品牌化为 AMI Cloud。获得专利的 Cloud Data Sets 能够在不修改现有流程的情况下,直接访问本地或超大规模云服务商的对象存储。
"目前,在磁带和虚拟磁带库 (VTL) 上进行大型机数据的二级备份存储和检索既昂贵又耗时," BMC AMI 解决方案的营销副总裁 Priya Doty 表示。"BMC AMI Cloud Data 中的 CDS 功能提供了向对象存储的无缝过渡,这简化了备份和恢复流程,与传统解决方案相比可以节省成本。"
此外,通过 CDS,BMC AMI FDR (快速转储还原) 的当前用户现在可以将他们的磁带备份重定向到对象存储,无需直接访问存储设备 (DASD)、VTL 暂存或任何代码更改。BMC 表示,这将带来更快的备份速度、改善灾难恢复能力,并能够消除物理磁带和 VTL 存储的成本和基础设施需求。
去年,供应商在 BMC AMI DevX Code Insights 中引入了由 BMC AMI Assistant 支持的新 COBOL 代码解释功能。在生成式 AI 的驱动下,代码解释通过提供代码业务逻辑部分的简短摘要和代码逻辑流程的详细信息,赋予开发人员更强大的能力。
在 1 月的更新中,BMC AMI Assistant 现在包括"业内最广泛的语言支持",包括对 PL/I、JCL 和汇编语言编写的代码解释。BMC 表示,这有助于开发人员以"无与伦比的效率"理解、审查、扩展和测试大型机代码。
Java 在大型机上的使用正在增加,对改善应用程序性能的需求也随之增长。作为更新的一部分,新的 BMC AMI Strobe for Java 通过用户友好的网络界面,在单一工具中实现了"全面的"应用程序性能管理和分析。BMC AMI Strobe for Java 使开发人员能够"轻松识别"过度资源需求的来源,并在软件交付生命周期的早期阶段进行性能测试。
此外,由 BMC AMI Assistant 驱动的新型混合 AI 功能将 AI/ML 与生成式 AI 在 BMC AMI Ops Insight 中结合,简化了根本原因分析,有助于减少平均检测时间 (MTTD) 和平均解决时间 (MTTR)。新的交互式仪表板还允许用户根据其可观察性需求创建和个性化重点视图。
BMC 声称:"通过让系统程序员对他们看到的信息有更大的控制权,这些定制化的见解能够实现更快速和更智能的决策。"
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。