DDN 这家以高性能计算 (HPC) 闻名的公司recently获得了来自美国黑石集团 (Blackstone) 的3亿美元投资。据称这笔资金将用于将其在超级计算领域的领导地位转化为人工智能 (AI) 存储解决方案的优势。
虽然面向这两种工作负载的存储阵列在跟上极高性能处理方面有相似之处,但它们之间存在差异。HPC 工作负载涉及读取相对较少的数学公式来产生大量的模拟数据。
而在 AI 中则恰恰相反。在训练过程中需要读取海量数据来生成相对较小的模型,或在推理过程中根据应用程序或人类提示生成响应。
DDN EXAscaler 适应 AI 需求
DDN 在 HPC 市场销售其 EXAscaler 阵列。这些阵列使用开源的 Lustre 并行文件系统,该系统最初推出于约20年前。EXAscaler 阵列由多个磁盘驱动器组成,其中一个作为其他驱动器内容的索引。计算节点查询该节点以确定要读写数据块的其他节点,然后直接与该节点通信。
要运行该系统,计算节点必须运行 Lustre 客户端,并与所有存储节点建立直接网络连接。这通常意味着使用 Infiniband 连接,具有零数据包丢失特性,并且控制器能够直接复制主机机器上的随机访问内存 (RAM) 或非易失性内存快速通道 (NVMe) 存储中的数据。
DDN 已将这些功能整合到面向 AI 工作负载的 AI400X2 阵列中。这些阵列使用与 EXAscaler 相同的 2U 节点,但采用 Nvidia 以太网 SpectrumX 控制器卡。这些卡使用 Nvidia 的 BlueField DPU,为以太网带来了与 Infiniband 相同的优势。它们使用融合以太网上的 RDMA (RoCE),也意味着在直接写入 Nvidia 图形处理器 (GPU) 内存时不会丢失数据包 (使用 GPUdirect)。
DDN 的训练数据存储
AI400X2 主要用于在训练工作负载期间与 GPU 进行尽可能快速的通信。但对于企业可能想要存储的已训练模型产生的海量数据来说,这可能是一个非常昂贵的选择。
为此,DDN 自2023年起推出了 Infinia 阵列。这些阵列提供 S3 对象存储,能够无中断地添加驱动器。
DDN 已将 S3 存储功能卸载到容器中,如元数据服务器、存储服务器等。这意味着当特定的 S3 容器部署在计算节点上时,DDN 可以在 Infinia 中复制类似于 Lustre 的功能。Infinia 阵列还可以配备 SpectrumX 卡以最大化传输速度。
DDN 声称他们最了解密集型存储的工作原理。当 GPU 并行写入数据然后快速读取数据时,可能会出现不一致性问题。检查点可以调节这一点,但这是一个在处理过程中消耗资源的操作,且不会产生有用的数据。DDN 表示,通过精心管理数据流和缓存使用,可以避免这种延迟。
DDN 预告重大公告
DDN 在 AI 领域已有建树,其客户包括 Elon Musk 的 xAI,后者部署了一台名为 Colossus 的超级计算机,配备了100,000个 H100 GPU。因此,这笔新的3亿美元投资的具体用途尚不完全明确。
黑石集团可能正在多个 AI 相关企业中布局,现已在 DDN 董事会中占有一席之位。去年,该基金为 AI 基础设施即服务供应商 CoreWeave 提供了财务支持。
DDN 承诺将在2月20日发布重大公告,并以"我们让 AI 成为现实"为宣传语。
好文章,需要你的鼓励
在Meta Connect大会上,Meta展示了新一代Ray-Ban智能眼镜的硬件实力,配备神经腕带支持手势控制,电池续航翻倍,摄像头性能提升。然而AI演示却频频失败,包括Live AI烹饪指导、WhatsApp通话和实时翻译功能都出现问题。尽管Meta在智能眼镜硬件方面表现出色,但AI软件仍远未达到扎克伯格提出的"超级智能"目标。文章建议Meta考虑开放AI生态,允许用户选择其他AI服务商,这可能帮助Meta在AI硬件市场获得优势。
DeepSeek-AI团队通过强化学习技术开发出DeepSeek-R1系列推理模型,无需人工标注即可自主学习复杂推理。该模型在数学、编程等领域表现卓越,在AIME 2024中达到79.8%准确率,编程能力超越96%人类选手。研究团队还通过知识蒸馏技术将推理能力传递给小模型,使7B参数模型也能超越GPT-4o。这项突破为AI推理能力发展开辟新路径。
英伟达同意以50亿美元收购英特尔股份,双方将合作开发多代数据中心和PC产品。英伟达将以每股23.28美元的价格收购约4%的英特尔股份,成为其最大股东之一。两家公司将通过NVLink接口整合各自架构,实现CPU和GPU间的高速数据传输。英特尔将为英伟达AI平台定制x86处理器,并开发集成RTX GPU的x86系统级芯片,用于消费级PC市场。
微软研究院推出rStar-Math系统,通过创新的"深度思考"训练方法,让小型AI模型在数学推理能力上达到甚至超越OpenAI o1水平。该系统采用代码验证、过程偏好模型和四轮自进化训练,将70亿参数模型的数学能力从58.8%提升至90.0%,在美国数学奥林匹克竞赛中达到前20%水平,证明了精巧方法比模型规模更重要,为AI发展开辟了新路径。