BMC Software 的 AMI Cloud Data 平台推出全新的 Cloud Data Sets 功能,通过提供直接访问云对象存储的能力,"革新"了大型机数据管理方式,无需修改现有的 JCL 或应用程序。
该供应商表示,这项升级"赋能"IT 运维团队完全用云端解决方案替代传统磁带存储,"简化"运营并"最小化"业务中断。BMC 于 2024 年 4 月收购了 Model9,并将其软件更名为 AMI Cloud。
BMC 认为,在未来五年内,大多数组织将"逐步淘汰"二级磁带存储和传统磁带软件。他们表示,大型机数据存储的未来在于基于云的对象存储,与传统虚拟磁带库 (VTL) 解决方案相比,云存储"最高可节省 12 倍成本",同时无需投入昂贵的磁带硬件。
南非的 Nedbank 正在拥抱这一演进。在 BMC 的协助下,该公司已经改造了其数据管理方式。切换到云端解决方案后,原本需要 48 小时的备份时间缩短至 36 分钟。这一转变还使 Nedbank 得以精简灾难恢复和备份流程,在降低复杂性的同时提升了安全性和数据可用性。
BMC 表示:"这一演进使 IT 运维团队无需改变运营方式即可将磁带备份重定向到云端,消除了大型机环境中采用云技术的主要障碍。"通过 Cloud Data Sets,AMI Cloud Data 支持所有主要备份工具,包括 EXCP。Nedbank 企业存储和备份 IT 经理 Ashwin Naidu 说:"我们的备份性能获得了巨大提升。例如,原本需要整个周末 48 小时才能完成的备份,在采用云端解决方案后仅需 36 分钟。"
除了显著缩短备份和恢复时间外,新版 AMI Cloud Data 还针对 CPU 消耗进行了优化。
为了提供这些服务,BMC 表示正在将其软件专业知识与包括 Hitachi、Mainline、Dell 和 AWS 在内的合作伙伴的数据基础设施相结合。
好文章,需要你的鼓励
Anthropic推出Claude Code的Slack集成功能,让开发者能直接在聊天线程中委托编程任务。这项测试功能于周一以研究预览版形式发布,基于现有Slack集成增加了完整工作流自动化。开发者现在可以标记@Claude启动完整编程会话,Claude会分析消息确定合适的代码库,在线程中发布进度更新并分享审查链接。这反映了行业趋势:AI编程助手正从IDE迁移到团队协作工具中。
波恩大学研究团队首次量化AI训练的材料成本,发现一块GPU含32种元素,93%为重金属。训练GPT-4需消耗约7吨金属材料,其中多为有毒重金属。研究建立了从计算需求到硬件消耗的评估框架,发现通过软硬件优化可减少93%的资源消耗。该研究揭示了AI发展的隐性环境代价,呼吁行业从规模竞赛转向效率革命,实现可持续发展。
AI发展推动数据中心行业迎来前所未有的挑战与机遇。Switch公司消耗内华达州三分之一电力,展现了AI对电力需求的巨大规模。核能成为AI未来发展的关键,单个AI机架功耗可达1.7MW。预计到2030年,数据中心行业将消耗200GW电力。创新的星形配置设计和差异化备电策略正在重新定义数据中心的弹性架构,仅20%的工作负载需要发电机备份。
南开大学团队构建了迄今最大规模的结肠镜AI数据库COLONVQA,包含110万视觉问答条目。他们发现现有AI模型存在泛化能力不足和容易被误导等问题,因此开发了首个具备临床推理能力的结肠镜AI模型COLONR1。该模型采用多专家辩论机制生成推理数据,在综合评估中准确率达56.61%,比传统方法提升25.22%,为智能结肠镜诊断从图像识别向临床推理的转变奠定了基础。