根据 Xinnor 发布的一份案例研究 [PDF],新加坡一所知名大学通过采用 Xinnor 的 xiRAID 存储技术,显著提升了其 AI 研究速度。
为支持持续性研究工作,这所未具名大学部署了包括 Nvidia 在内的多个 GPU 和计算系统。
该校的部署方案支持医疗保健和自然语言处理等领域的高级 AI 项目,并配备了 BeeGFS 客户端和服务器集群。BeeGFS 是一个为高性能计算开发的并行文件系统,包含分布式元数据架构,提供可扩展性和灵活性。
在存储需求方面,该大学要求具备快速数据访问能力、数据保护、易于部署和管理、成本优化,以及能够根据未来客户端增长和性能需求进行扩展的能力。
为满足这些要求,由 Xinnor 本地合作伙伴 On Demand System (ODS) 设计的存储方案通过两个 100Gb InfiniBand 端口,实现了 24.7Gbit/秒的顺序读取性能。
该基础设施包含两个服务器节点,每个节点配备 24 个 NVMe 驱动器,并由 xiRAID 提供保护和加速。这种配置不仅满足了所需吞吐量,还确保了数据保护和未来扩展的可能性。
软件驱动的 xiRAID 技术采用先进算法提供冗余和容错能力,即使在多个驱动器同时故障的情况下也能确保数据安全。针对未来的性能需求,该大学可以通过增加 InfiniBand 卡来提升性能。
Xinnor 首席营收官 Davide Villa 表示:"xiRAID 能够实现接近完美的资源利用率并最大化 NVMe 性能,这对学术研究来说是一个突破性进展。我们与 ODS 的合作展示了软件定义 RAID 如何满足 AI 和高性能计算工作负载的严格要求,同时优化成本并简化部署。"
On Demand System 创始人 Rakesh Sabharwal 补充道:"通过将 xiRAID 作为解决方案的核心,我们帮助该大学在研究和创新领域突破了界限。xiRAID 与 BeeGFS 的无缝集成为大学提供了可靠、高性能的存储基础,完全符合大学的发展愿景。"
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。