根据 Xinnor 发布的一份案例研究 [PDF],新加坡一所知名大学通过采用 Xinnor 的 xiRAID 存储技术,显著提升了其 AI 研究速度。
为支持持续性研究工作,这所未具名大学部署了包括 Nvidia 在内的多个 GPU 和计算系统。
该校的部署方案支持医疗保健和自然语言处理等领域的高级 AI 项目,并配备了 BeeGFS 客户端和服务器集群。BeeGFS 是一个为高性能计算开发的并行文件系统,包含分布式元数据架构,提供可扩展性和灵活性。
在存储需求方面,该大学要求具备快速数据访问能力、数据保护、易于部署和管理、成本优化,以及能够根据未来客户端增长和性能需求进行扩展的能力。
为满足这些要求,由 Xinnor 本地合作伙伴 On Demand System (ODS) 设计的存储方案通过两个 100Gb InfiniBand 端口,实现了 24.7Gbit/秒的顺序读取性能。
该基础设施包含两个服务器节点,每个节点配备 24 个 NVMe 驱动器,并由 xiRAID 提供保护和加速。这种配置不仅满足了所需吞吐量,还确保了数据保护和未来扩展的可能性。
软件驱动的 xiRAID 技术采用先进算法提供冗余和容错能力,即使在多个驱动器同时故障的情况下也能确保数据安全。针对未来的性能需求,该大学可以通过增加 InfiniBand 卡来提升性能。
Xinnor 首席营收官 Davide Villa 表示:"xiRAID 能够实现接近完美的资源利用率并最大化 NVMe 性能,这对学术研究来说是一个突破性进展。我们与 ODS 的合作展示了软件定义 RAID 如何满足 AI 和高性能计算工作负载的严格要求,同时优化成本并简化部署。"
On Demand System 创始人 Rakesh Sabharwal 补充道:"通过将 xiRAID 作为解决方案的核心,我们帮助该大学在研究和创新领域突破了界限。xiRAID 与 BeeGFS 的无缝集成为大学提供了可靠、高性能的存储基础,完全符合大学的发展愿景。"
好文章,需要你的鼓励
新创公司Germ为Bluesky社交网络推出端到端加密消息服务,为用户提供比现有私信更安全的聊天选项。经过两年开发,该服务本周进入测试阶段,计划逐步扩大测试用户规模。Germ采用新兴技术如消息层安全协议和AT协议,无需手机号码即可实现安全通信。用户可通过"魔法链接"快速开始聊天,利用苹果App Clips技术无需下载完整应用。
这项研究由哈佛大学团队开发的创新框架,解决了多机构数据共享的核心难题。他们巧妙结合联邦学习、局部差分隐私和公平性约束,使不同机构能在保护数据隐私的同时协作开发更准确、更公平的决策模型。实验证明,该方法在多个真实数据集上既保障了隐私,又显著提升了模型公平性,为医疗、金融和政府等领域的数据协作提供了实用解决方案。
高通公司宣布正在与领先的超大规模云服务商进行深度合作谈判,开发专用于数据中心的CPU产品。CEO阿蒙表示,公司正在开发通用CPU和推理集群产品,预计2028财年开始产生收入。同时,高通面临三星在高端智能手机市场的竞争压力,三星计划在2026年推出采用2纳米工艺的新款Exynos处理器。高通Q3财报显示营收增长10%至103.5亿美元,净利润增长25%。
Meta AI研究团队开发的ALOHA系统是一种低成本开源的双臂机器人远程操作平台,旨在使机器人学习更加民主化和普及化。该系统结合了价格亲民的硬件设计和先进的行为克隆学习算法,使机器人能够从人类示范中学习复杂技能。研究表明,ALOHA系统展示了强大的泛化能力,能够在新环境中应用所学技能,如打开不同类型的瓶子。系统的开源性质鼓励全球研究者参与并推动机器人学习领域的发展,尽管仍面临成本和精确力控制等挑战。