根据 Xinnor 发布的一份案例研究 [PDF],新加坡一所知名大学通过采用 Xinnor 的 xiRAID 存储技术,显著提升了其 AI 研究速度。
为支持持续性研究工作,这所未具名大学部署了包括 Nvidia 在内的多个 GPU 和计算系统。
该校的部署方案支持医疗保健和自然语言处理等领域的高级 AI 项目,并配备了 BeeGFS 客户端和服务器集群。BeeGFS 是一个为高性能计算开发的并行文件系统,包含分布式元数据架构,提供可扩展性和灵活性。
在存储需求方面,该大学要求具备快速数据访问能力、数据保护、易于部署和管理、成本优化,以及能够根据未来客户端增长和性能需求进行扩展的能力。
为满足这些要求,由 Xinnor 本地合作伙伴 On Demand System (ODS) 设计的存储方案通过两个 100Gb InfiniBand 端口,实现了 24.7Gbit/秒的顺序读取性能。
该基础设施包含两个服务器节点,每个节点配备 24 个 NVMe 驱动器,并由 xiRAID 提供保护和加速。这种配置不仅满足了所需吞吐量,还确保了数据保护和未来扩展的可能性。
软件驱动的 xiRAID 技术采用先进算法提供冗余和容错能力,即使在多个驱动器同时故障的情况下也能确保数据安全。针对未来的性能需求,该大学可以通过增加 InfiniBand 卡来提升性能。
Xinnor 首席营收官 Davide Villa 表示:"xiRAID 能够实现接近完美的资源利用率并最大化 NVMe 性能,这对学术研究来说是一个突破性进展。我们与 ODS 的合作展示了软件定义 RAID 如何满足 AI 和高性能计算工作负载的严格要求,同时优化成本并简化部署。"
On Demand System 创始人 Rakesh Sabharwal 补充道:"通过将 xiRAID 作为解决方案的核心,我们帮助该大学在研究和创新领域突破了界限。xiRAID 与 BeeGFS 的无缝集成为大学提供了可靠、高性能的存储基础,完全符合大学的发展愿景。"
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。