英特尔整车方案助力汽车制造商通过优化能效降低成本,并提供用户期待的下一代体验。面对行业转型带来的高成本挑战,特别是高性能AI芯片和电动车电池的成本压力,采取系统化方案成为兼顾技术创新与盈利的关键策略。
面对复杂多样的成本问题,英特尔提出了一种全面的系统级策略。不同于仅关注单个组件的改进,英特尔采取整体视角,将各部分整合以优化整个系统。其策略围绕三大核心领域展开:软件定义的车载计算、智能能源管理和类似数据中心的工作负载管理。这种综合方法产生了协同效应,效果远超单独优化车辆各部件的方式。该方案视车辆为一个整体,支持工作负载在中央计算系统和域计算子系统间自由迁移,实现了高度灵活性、成本效益及能效的显著提升。
当前车辆架构因孤立运作而效率低下。例如,即使电动汽车未启动,仍会持续监控外部摄像头以防安全威胁或识别接近的驾驶员,由车载计算子系统支持这项功能,导致即便车辆静止时电池也会无谓耗电。
此任务无需常驻于中央计算系统内。采用英特尔软件定义域控制器来处理摄像头任务,可借鉴数据中心的概念,将负载转移至能效更高的域控制器,并仅在必要时激活中央计算系统。这样不仅节省能源,还能通过动态整合任务到域控制器中减少ECU数量。
整合智能电源策略与控制系统同样能降低整体能耗,如充电期间关闭ADAS ECU,或依据环境变化调整电源使用,有效节约能源。例如,在底特律的冬季关闭空调ECU,在凤凰城的夏季关闭座椅加热器和雨刮ECU。
尽管这些措施看似简单,却深刻影响着车辆架构。通过集中式电源管理控制器控制各ECU,能极大提高能源利用效率,无论燃油车还是电动车均能受益。
这些策略并非创新之举,已在PC行业中广泛应用,通过ACPI等标准显著延长了电池寿命。ACPI允许对PC平台上所有耗电设备进行确定性控制,推动了PC电池从早期的一小时续航到现今的全天候使用。这一理念正通过SAE J3311标准引入汽车领域,旨在将成功的PC概念应用于车辆,以提高能源效率。
更优秀的软件定义设计代表了一种架构思维转变,它将计算、内存和I/O资源整合为共享池,并能够动态且无干扰地分配给任何当前的工作负载。这种方法改变了我们对汽车电子/电气架构的传统理解,即从以往的固定功能模块和1:1的应用到芯片映射,转向了跨越多个模块的灵活资源池。这种转变采取了全新的系统级方法,为消费者提供了所需的功能体验。简言之,这是一种类似于数据中心的解决方案,而非手机或平板电脑的方案。英特尔在这一领域有着丰富的经验,能够助力汽车行业完成这一重要的转型。
转向软件定义、可持续且可扩展的汽车绝非轻而易举之事。尤其当汽车制造商采用逐步升级固定功能模块的方式来演进其车辆架构时,挑战更加艰巨。然而,采取全面的系统级方法,并结合恰当的芯片与功能设计,可以为汽车制造商开启新的创收机会。在这方面,英特尔正扮演着领头羊的角色。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。