IBM正在为Storage Scale规划“Hyperstore”升级方案,希望借助NVMe over Fabrics加快远程驱动器上的数据获取速度。
Storage Scale是IBM旗下备受推崇的GPFS(通用并行文件系统)的最新版本,其通过各文件系统节点(即服务器)的并行运行以加快文件读写速度。NVMe over Fabrics(简称NVMe-OF)是一种协议,可有效扩展PCIe总线并跨TCP/IP、光纤通道、iSCSI和以太网网络链路运行,为目标服务器提供直接的块级存储驱动器访问。
IBM公司IT架构师Frank Kraemer认为,Tom Lyon在《NFS必须消亡(NFS must die)》一文中表达的观点“非常酷”,并表示“我们打算使用NVMe-oF来提高速度,但仍将保留文件系统接口及Erasure Coding(GPFS Native Raid,简称GNR)的传统方式以实现易用性与安全操作。”
这些计划均以Storage Scale上的Hyperstore功能为中心,由其负责提供NVMe-oF性能池。
在高性能计算(HPC)用户论坛上,IBM发布的演示文稿《IBM供应商更新——存储篇》也提到了这一概念。IBM数据与AI存储解决方案部门存储文件与对象系统首席架构师Chris Maestas表示,在混合和多云世界中数据可谓无处不在,而基于CPU和GPU的算力都希望能像访问本地数据那样访问远程数据。
Storage Scale主要通过提供存储访问、使用单一全局命名空间抽象以及加速等方式达成这一目标,具体如以下页面所示:
在谈到AI工作负载与GPU时,他表示管理员可以拉近远程数据与计算资源之间的距离,使用NVMe-oF模拟GPU计算节点上的本地存储。这一设计原则在SC22大会上也得到了展示,IBM打造的配备SSD的ESS 3500能够为计算客户端提供超过1000万IOPS的吞吐量及数百GBps的传输带宽。为此,该系统还集成有IOPS极高的存储池。
这也正是Hyperstore的起点:
Hyperstore上周于伦敦面向Spectrum Scale User Group首次亮相。这是一套分层系统,Storage Scale使用GNR(native declustered RAID)、性能池与客户端计算节点上的本地驱动器,共同提供可靠的中间存储池。
其使用网络共享磁盘(NSD)访问这套可靠存储池,NSD是文件存储系统网络上存储磁盘的逻辑分组。Storage Scale会对各NSD服务器上的文件进行切片,再将各切片存储为数据块。访问客户端则对各NSD服务器执行实时并行IO。
性能池驱动器属于可靠池驱动器中的子集,使用速度更快的NVMe-oF进行访问,且全部计算节点共享统一的缓存。
关于Hyperstore的更多细节将在未来几个月内公布。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。