IBM正在为Storage Scale规划“Hyperstore”升级方案,希望借助NVMe over Fabrics加快远程驱动器上的数据获取速度。
Storage Scale是IBM旗下备受推崇的GPFS(通用并行文件系统)的最新版本,其通过各文件系统节点(即服务器)的并行运行以加快文件读写速度。NVMe over Fabrics(简称NVMe-OF)是一种协议,可有效扩展PCIe总线并跨TCP/IP、光纤通道、iSCSI和以太网网络链路运行,为目标服务器提供直接的块级存储驱动器访问。
IBM公司IT架构师Frank Kraemer认为,Tom Lyon在《NFS必须消亡(NFS must die)》一文中表达的观点“非常酷”,并表示“我们打算使用NVMe-oF来提高速度,但仍将保留文件系统接口及Erasure Coding(GPFS Native Raid,简称GNR)的传统方式以实现易用性与安全操作。”
这些计划均以Storage Scale上的Hyperstore功能为中心,由其负责提供NVMe-oF性能池。
在高性能计算(HPC)用户论坛上,IBM发布的演示文稿《IBM供应商更新——存储篇》也提到了这一概念。IBM数据与AI存储解决方案部门存储文件与对象系统首席架构师Chris Maestas表示,在混合和多云世界中数据可谓无处不在,而基于CPU和GPU的算力都希望能像访问本地数据那样访问远程数据。
Storage Scale主要通过提供存储访问、使用单一全局命名空间抽象以及加速等方式达成这一目标,具体如以下页面所示:

在谈到AI工作负载与GPU时,他表示管理员可以拉近远程数据与计算资源之间的距离,使用NVMe-oF模拟GPU计算节点上的本地存储。这一设计原则在SC22大会上也得到了展示,IBM打造的配备SSD的ESS 3500能够为计算客户端提供超过1000万IOPS的吞吐量及数百GBps的传输带宽。为此,该系统还集成有IOPS极高的存储池。
这也正是Hyperstore的起点:

Hyperstore上周于伦敦面向Spectrum Scale User Group首次亮相。这是一套分层系统,Storage Scale使用GNR(native declustered RAID)、性能池与客户端计算节点上的本地驱动器,共同提供可靠的中间存储池。
其使用网络共享磁盘(NSD)访问这套可靠存储池,NSD是文件存储系统网络上存储磁盘的逻辑分组。Storage Scale会对各NSD服务器上的文件进行切片,再将各切片存储为数据块。访问客户端则对各NSD服务器执行实时并行IO。
性能池驱动器属于可靠池驱动器中的子集,使用速度更快的NVMe-oF进行访问,且全部计算节点共享统一的缓存。
关于Hyperstore的更多细节将在未来几个月内公布。
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。