英特尔子公司Silicon Mobility发布最新OLEA U310 SoC,显著提升电动汽车的整体性能,简化设计和生产流程,并拓展SoC服务,确保可以在各种EV充电平台中无缝运作。
在全球范围内,电动汽车的高昂售价仍然是影响潜在买家下单的最大障碍之一。电动汽车目前的制造成本高于传统燃油汽车的主要原因,是先进的电池和电机技术所带来的昂贵成本。市面上近期的解决方案是通过车辆层面的节能,包括改进与电动汽车充电基础设施的整合,来提升现有电池技术的效率。
Silicon Mobility在行业中率先推出集硬件和软件于一体的完整解决方案。OLEA U310经过专门设计,可与分布式软件相结合,满足电气架构中动力系域控制的需求。基于独特的混合和异构架构,单个OLEA 310 FPCU可替代一个系统组合中的最多6个标准微控制器,来并行控制逆变器、电机、变速箱、DC-DC转换器以及车载充电。使用310 FPCU,OEM和Tier 1供应商能够同时实现对多个不同功率和能量功能的实时控制。除了物料清单(BoM)的减少,早期数据显示,与现在的电动汽车相比,在相同功率下,OLEA 310的使用可将能效提高5%,电机尺寸缩小25%,冷却需求减少35%,无源元件尺寸缩小30倍。
Silicon Mobility全新解决方案的推出,让电动汽车厂商能够设计出性能卓越、续航里程更远、生产成本可能更低的软件定义电动汽车,因为需要集成的元件数量减少了。这一全新解决方案与英特尔汽车业已推出的AI增强型软件定义汽车(SDV)SoC系列相结合,将共同推动行业向全电动和软件定义的未来转型。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。