英特尔在《自然》杂志发表题为《检测300毫米自旋量子比特晶圆上的单电子器件》的研究论文,展示了领先的自旋量子比特均匀性、保真度和测量数据。这项研究为硅基量子处理器的量产和持续扩展(构建容错量子计算机的必要条件)奠定了基础。
英特尔打造的300毫米自旋量子比特晶圆
英特尔的量子硬件研究人员开发了一种300毫米低温检测工艺,使用互补金属氧化物半导体(CMOS)制造技术,在整个晶圆上收集有关自旋量子比特器件性能的大量数据。
量子比特器件良率的提升,加上高通量的测试工艺,让英特尔的研究人员能够根据更多的数据分析均匀性,这是扩展量子计算机的重要一步。研究人员还发现,这些晶圆上的单电子器件在作为自旋量子比特运行时表现良好,门保真度达到了99.9%。就完全基于CMOS工艺制造的量子比特而言,这一保真度设立了业界领先水平。
自旋量子比特的尺寸较小,直径约为100纳米,因此密度高于其它类型的量子比特(如超导量子比特),从而能够在相同尺寸的芯片上构建更复杂的量子处理器。英特尔使用了极紫外光刻(EUV)技术实现小尺寸自旋量子比特芯片的大批量制造。
用数百万个均匀的量子比特实现容错量子计算机,需要高度可靠的制造工艺。凭借在晶体管制造领域丰富的专业积累,英特尔走在行业前沿,利用先进的300毫米CMOS制造技术打造硅自旋量子比特。300毫米CMOS制造技术通常能够在单个芯片上集成数十亿个晶体管。
在这些研究成果的基础上,英特尔希望继续取得进展,使用这些技术添加更多互连层,以制造具有更高量子比特数和更多连接的2D阵列,并在工业制造流程中实现高保真的双量子比特门(2-qubit gates)。在量子计算领域,英特尔未来的工作重点是通过下一代量子芯片继续扩展量子器件和实现性能提升。
好文章,需要你的鼓励
在他看来,企业对AI的恐惧源自未知,而破解未知的钥匙,就藏在“AI平台+开源”这个看似简单的公式里。
斯坦福和魁北克研究团队首创"超新星事件数据集",通过让AI分析历史事件和科学发现来测试其"性格"。研究发现不同AI模型确实表现出独特而稳定的思维偏好:有些注重成就结果,有些关注情感关系,有些偏向综合分析。这项突破性研究为AI评估开辟了新方向,对改善人机协作和AI工具选择具有重要意义。
Pure Storage发布企业数据云(EDC),整合其现有产品组合,提供增强的数据存储可见性和基于策略的简化管理。EDC集成了Purity存储操作系统、Fusion资源管理、Pure1舰队管理和Evergreen消费模式等架构元素,提供类云存储管理环境。该方案支持声明式策略驱动管理,让客户专注业务成果而非基础设施管理。同时发布高性能闪存阵列和300TB直接闪存模块,并与Rubrik合作提供网络安全防护能力。
威斯康星大学研究团队提出"生成-筛选-排序"策略,通过结合快速筛选器和智能奖励模型,在AI代码验证中实现了11.65倍速度提升,准确率仅下降8.33%。该方法先用弱验证器移除明显错误代码,再用神经网络模型精确排序,有效解决了传统方法在速度与准确性之间的两难选择,为实用化AI编程助手铺平了道路。