英特尔在《自然》杂志发表题为《检测300毫米自旋量子比特晶圆上的单电子器件》的研究论文,展示了领先的自旋量子比特均匀性、保真度和测量数据。这项研究为硅基量子处理器的量产和持续扩展(构建容错量子计算机的必要条件)奠定了基础。

英特尔打造的300毫米自旋量子比特晶圆
英特尔的量子硬件研究人员开发了一种300毫米低温检测工艺,使用互补金属氧化物半导体(CMOS)制造技术,在整个晶圆上收集有关自旋量子比特器件性能的大量数据。
量子比特器件良率的提升,加上高通量的测试工艺,让英特尔的研究人员能够根据更多的数据分析均匀性,这是扩展量子计算机的重要一步。研究人员还发现,这些晶圆上的单电子器件在作为自旋量子比特运行时表现良好,门保真度达到了99.9%。就完全基于CMOS工艺制造的量子比特而言,这一保真度设立了业界领先水平。
自旋量子比特的尺寸较小,直径约为100纳米,因此密度高于其它类型的量子比特(如超导量子比特),从而能够在相同尺寸的芯片上构建更复杂的量子处理器。英特尔使用了极紫外光刻(EUV)技术实现小尺寸自旋量子比特芯片的大批量制造。
用数百万个均匀的量子比特实现容错量子计算机,需要高度可靠的制造工艺。凭借在晶体管制造领域丰富的专业积累,英特尔走在行业前沿,利用先进的300毫米CMOS制造技术打造硅自旋量子比特。300毫米CMOS制造技术通常能够在单个芯片上集成数十亿个晶体管。
在这些研究成果的基础上,英特尔希望继续取得进展,使用这些技术添加更多互连层,以制造具有更高量子比特数和更多连接的2D阵列,并在工业制造流程中实现高保真的双量子比特门(2-qubit gates)。在量子计算领域,英特尔未来的工作重点是通过下一代量子芯片继续扩展量子器件和实现性能提升。
好文章,需要你的鼓励
Core Memory播客主持人Ashley Vance近日与OpenAI首席研究官Mark Chen进行了一场长达一个半小时的对话。这是Chen近年来最公开、最深入的一次访谈,话题覆盖人才争夺战、研究战略、AGI时间表,以及他个人的管理哲学。
波士顿大学团队发现当今多模态AI存在严重"偏科"问题:面对冲突的文字、视觉、听觉信息时,AI过分依赖文字而忽视真实感官内容。研究团队构建MMA-Bench测试平台,通过创造视听冲突场景暴露了主流AI模型的脆弱性,并提出模态对齐调优方法,将模型准确率从25%提升至80%,为构建更可靠的多模态AI系统提供重要突破。
脑机接口技术正快速发展,特别是非侵入性方法取得重大突破。通过EEG、fNIRS、MEG等传感技术结合人工智能,实现思维解码、图像重构等功能。聚焦超声波技术能精确调节大脑深层结构,为神经疾病治疗带来新希望。消费级可穿戴设备已能改善睡眠、缓解抑郁。这些技术将重塑人机交互方式,从医疗应用扩展至认知增强领域。
UC伯克利研究团队发现了一种名为"双重话语"的AI攻击方法,能够通过简单的词汇替换绕过当前所有主流聊天机器人的安全防护。攻击者只需用无害词汇替换危险词汇,就能让AI在不知不觉中提供危险信息。研究揭示了现有AI安全机制的根本缺陷,迫切需要开发新的防护策略来应对这一威胁。