根据Kompprise委托进行的“非结构化数据管理状况”调查 显示,人工智能正成为IT和商业领袖面临的主要数据管理挑战。
研究显示,公司在很大程度上允许员工使用生成型人工智能,但三分之二(66%)的公司担心它可能带来的数据治理风险,包括隐私、安全以及供应商解决方案中缺乏数据源透明度。
这项由数据管理供应商Kompprise委托进行的“非结构化数据管理状况”调查收集了美国和英国拥有1000多名员工的公司的300名企业存储IT和业务决策者的回复。
虽然只有10%的组织不允许员工使用生成人工智能,但大多数组织担心不道德、有偏见或不准确的输出,以及公司数据泄露到供应商的人工智能系统中。
为了应对这些挑战,同时也从人工智能中寻找竞争优势,研究发现,40%的领导者正在采取多管齐下的方法来降低人工智能中非结构化数据的风险,包括存储、数据管理和安全工具,以及使用内部工作组来监督人工智能的使用。
领导者面临的最大非结构化数据管理挑战是“在不干扰用户和应用程序的情况下移动数据”(47%),但紧随其后的是“为人工智能和云服务做准备”(46%)。
“生成式人工智能对数据治理和保护提出了新的问题,” NAND Research首席分析师Steve McDowell表示,“研究显示,IT领导者正在努力在快速推出生成式人工智能解决方案的同时,负责平衡企业数据的保护,但这是一个困难的挑战,需要采用智能工具。”
“IT领导者正在将重点转移到利用生成性人工智能解决方案上,但他们希望在这样做时有所限制, ” Kompprise首席执行官Kumar Goswami补充道,“人工智能的数据治理需要正确的数据管理策略,包括跨数据存储孤岛的可见性、数据来源的透明度、高性能的数据移动性和安全的数据访问。”
好文章,需要你的鼓励
Sholto非常年轻,但他有从Google Gemini团队到Anthropic的经历,让他对大型AI实验室的运作、技术突破的本质、以及行业真实进展有一手认知。
字节跳动发布Seedream 4.0多模态图像生成系统,实现超10倍速度提升,1.4秒可生成2K高清图片。该系统采用创新的扩散变换器架构,统一支持文字生成图像、图像编辑和多图合成功能,在两大国际竞技场排行榜均获第一名,支持4K分辨率输出,已集成至豆包、剪映等平台,为内容创作带来革命性突破。
红帽公司研究团队提出危险感知系统卡(HASC)框架,为AI系统建立类似"体检报告"的透明度文档,记录安全风险、防护措施和问题修复历史。同时引入ASH识别码系统,为AI安全问题建立统一标识。该框架支持自动生成和持续更新,与ISO/IEC 42001标准兼容,旨在平衡透明度与商业竞争,建立更可信的AI生态系统,推动行业协作和标准化。