根据Kompprise委托进行的“非结构化数据管理状况”调查 显示,人工智能正成为IT和商业领袖面临的主要数据管理挑战。
研究显示,公司在很大程度上允许员工使用生成型人工智能,但三分之二(66%)的公司担心它可能带来的数据治理风险,包括隐私、安全以及供应商解决方案中缺乏数据源透明度。
这项由数据管理供应商Kompprise委托进行的“非结构化数据管理状况”调查收集了美国和英国拥有1000多名员工的公司的300名企业存储IT和业务决策者的回复。
虽然只有10%的组织不允许员工使用生成人工智能,但大多数组织担心不道德、有偏见或不准确的输出,以及公司数据泄露到供应商的人工智能系统中。
为了应对这些挑战,同时也从人工智能中寻找竞争优势,研究发现,40%的领导者正在采取多管齐下的方法来降低人工智能中非结构化数据的风险,包括存储、数据管理和安全工具,以及使用内部工作组来监督人工智能的使用。
领导者面临的最大非结构化数据管理挑战是“在不干扰用户和应用程序的情况下移动数据”(47%),但紧随其后的是“为人工智能和云服务做准备”(46%)。
“生成式人工智能对数据治理和保护提出了新的问题,” NAND Research首席分析师Steve McDowell表示,“研究显示,IT领导者正在努力在快速推出生成式人工智能解决方案的同时,负责平衡企业数据的保护,但这是一个困难的挑战,需要采用智能工具。”
“IT领导者正在将重点转移到利用生成性人工智能解决方案上,但他们希望在这样做时有所限制, ” Kompprise首席执行官Kumar Goswami补充道,“人工智能的数据治理需要正确的数据管理策略,包括跨数据存储孤岛的可见性、数据来源的透明度、高性能的数据移动性和安全的数据访问。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。