根据Kompprise委托进行的“非结构化数据管理状况”调查 显示,人工智能正成为IT和商业领袖面临的主要数据管理挑战。
研究显示,公司在很大程度上允许员工使用生成型人工智能,但三分之二(66%)的公司担心它可能带来的数据治理风险,包括隐私、安全以及供应商解决方案中缺乏数据源透明度。
这项由数据管理供应商Kompprise委托进行的“非结构化数据管理状况”调查收集了美国和英国拥有1000多名员工的公司的300名企业存储IT和业务决策者的回复。
虽然只有10%的组织不允许员工使用生成人工智能,但大多数组织担心不道德、有偏见或不准确的输出,以及公司数据泄露到供应商的人工智能系统中。
为了应对这些挑战,同时也从人工智能中寻找竞争优势,研究发现,40%的领导者正在采取多管齐下的方法来降低人工智能中非结构化数据的风险,包括存储、数据管理和安全工具,以及使用内部工作组来监督人工智能的使用。
领导者面临的最大非结构化数据管理挑战是“在不干扰用户和应用程序的情况下移动数据”(47%),但紧随其后的是“为人工智能和云服务做准备”(46%)。
“生成式人工智能对数据治理和保护提出了新的问题,” NAND Research首席分析师Steve McDowell表示,“研究显示,IT领导者正在努力在快速推出生成式人工智能解决方案的同时,负责平衡企业数据的保护,但这是一个困难的挑战,需要采用智能工具。”
“IT领导者正在将重点转移到利用生成性人工智能解决方案上,但他们希望在这样做时有所限制, ” Kompprise首席执行官Kumar Goswami补充道,“人工智能的数据治理需要正确的数据管理策略,包括跨数据存储孤岛的可见性、数据来源的透明度、高性能的数据移动性和安全的数据访问。”
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。