根据Kompprise委托进行的“非结构化数据管理状况”调查 显示,人工智能正成为IT和商业领袖面临的主要数据管理挑战。
研究显示,公司在很大程度上允许员工使用生成型人工智能,但三分之二(66%)的公司担心它可能带来的数据治理风险,包括隐私、安全以及供应商解决方案中缺乏数据源透明度。
这项由数据管理供应商Kompprise委托进行的“非结构化数据管理状况”调查收集了美国和英国拥有1000多名员工的公司的300名企业存储IT和业务决策者的回复。
虽然只有10%的组织不允许员工使用生成人工智能,但大多数组织担心不道德、有偏见或不准确的输出,以及公司数据泄露到供应商的人工智能系统中。
为了应对这些挑战,同时也从人工智能中寻找竞争优势,研究发现,40%的领导者正在采取多管齐下的方法来降低人工智能中非结构化数据的风险,包括存储、数据管理和安全工具,以及使用内部工作组来监督人工智能的使用。
领导者面临的最大非结构化数据管理挑战是“在不干扰用户和应用程序的情况下移动数据”(47%),但紧随其后的是“为人工智能和云服务做准备”(46%)。
“生成式人工智能对数据治理和保护提出了新的问题,” NAND Research首席分析师Steve McDowell表示,“研究显示,IT领导者正在努力在快速推出生成式人工智能解决方案的同时,负责平衡企业数据的保护,但这是一个困难的挑战,需要采用智能工具。”
“IT领导者正在将重点转移到利用生成性人工智能解决方案上,但他们希望在这样做时有所限制, ” Kompprise首席执行官Kumar Goswami补充道,“人工智能的数据治理需要正确的数据管理策略,包括跨数据存储孤岛的可见性、数据来源的透明度、高性能的数据移动性和安全的数据访问。”
好文章,需要你的鼓励
OpenAI推出ChatGPT Images新版本GPT Image 1.5,承诺更好的指令遵循、更精确的编辑功能和高达4倍的图像生成速度。该模型面向所有ChatGPT用户和API开放。这是OpenAI在CEO奥特曼宣布"红色警报"后与谷歌Gemini竞争的最新升级。新模型提供后期制作功能,支持更精细的编辑控制,能在编辑过程中保持面部相似度、光照、构图和色调的视觉一致性,解决了传统AI图像工具迭代编辑时缺乏一致性的问题。
艾伦人工智能研究所开发的olmOCR 2通过创新的单元测试训练方法,将文档识别准确率提升至82.4%,在处理复杂数学公式、表格和多栏布局方面表现卓越。该系统采用强化学习和合成数据生成技术,实现了完全开源,为全球研究者提供了先进的OCR解决方案,推动了AI技术民主化发展。
Zoom推出AI Companion 3.0,采用联邦AI架构结合自研模型与OpenAI、Anthropic等第三方大语言模型。新版本具备智能工作流、对话式工作界面等功能,可将会议对话转化为洞察、进度跟踪和文档内容。系统支持加密传输,不使用客户内容训练模型。用户可通过ai.zoom.us访问,或以每月10美元独立购买。
苹果公司发布了包含40万张图片修改案例的AI训练数据集Pico-Banana-400K,涵盖35种修图操作类型。该数据集采用严格质量控制,包含成功失败案例对比和多轮修图场景。研究显示AI在全局修改方面表现优秀,但精细操作仍有挑战。这为AI修图技术发展奠定基础,未来将让修图软件更智能易用。