1月7日,阿里云实时数仓Hologres发布最新版本,在成本、可用性、在线高可用等多方面进行了能力升级,行存吞吐提升100%,列存吞吐提升30%,支持行列共存,支持更加丰富的OLAP分析场景,支持Binlog全链路事件驱动加工,原生JSON数据类型和索引,进一步降低开发和运维成本,增强Hologres高并发的在线服务能力。
Hologres是一站式实时数据仓库引擎,支持海量数据实时写入、实时更新、更新及分析、实时分析,支持PB级数据多维分析与即席分析以及高并发低延迟的在线数据服务等,与MaxCompute、Flink、DataWorks深度融合,提供离在线一体化全栈数仓解决方案。
阿里云资深技术专家果贝表示:“随着企业数字化转型的加剧,实时数仓技术开始逐渐从幕后走到台前,被越来越多的企业作为生产系统支撑多种业务场景,一站式、在线化、敏捷化成为实时数仓新的发展趋势”。
数仓建设过程中,开发、运维成本和在线高可用一直是难点和痛点。大数据场景上,处理的数据量和复杂度远高于数据库场景,传统数仓通常是用不同的产品去适用不同的场景,比如ClickHouse常用于OLAP分析,HBase常用于服务场景,无法用一个产品满足所有需求,多套系统非常容易造成架构冗余,运维复杂等问题,导致成本只增不减。同时,随着实时数仓被作为生产系统的广泛使用,业务对系统的可用性和稳定性都提出了更高更严苛的要求,但实时数仓技术要实现生产高可用也需要面临一定的取舍和挑战,比如高性能的同时资源隔离、宕机时的快速恢复能力等,以满足不同场景的SLA。
基于以上问题,Hologres在成本、可用性、在线高可用等多方面进行了能力升级,进一步降低开发和运维成本,增强Hologres高并发的在线服务能力,行存吞吐提升100%,列存吞吐提升30%,支持行列共存,支持更加丰富的OLAP分析场景,支持Binlog全链路事件驱动加工,原生JSON数据类型和索引,加速半结构数据的检索,坚持一个系统解决大数据问题的原则,降本增效,助力服务分析一体化建设。
在生产高可用方面,Hologres重磅发布不同层次的隔离与高可用部署,支持单实例内资源组隔离,实现多租户的计算资源隔离,支持多实例高可用部署(共享存储),实现读写分离和故障隔离,并结合Hologres底层核心调度等能力,实现不同场景生产高可用。此外,Hologres在可用性、生态兼容、企业级运维能力上不断探索和更新,帮助企业实现新一代一站式实时数仓。
据了解,Hologres还多次支持了阿里巴巴双11等大促活动,在2021年阿里巴巴双11期间,经受住了每秒11.2亿条的高速写入,和每秒1.1亿次的查询峰值(包含点查和OLAP查询),创历史记录。
除此之外,Hologres除了支持阿里巴巴的GMV实时大屏等业务外,还支持了实时搜索推荐、菜鸟智能物流、达摩院无人车配送等核心业务场景,这意味着实时数仓技术开始在阿里巴巴核心业务崭露头角,并在性能、生产稳定性等方面经受住了严格的生产考验。
了解更多发布详情,请查看:
【发布会云栖号直播间】https://yqh.aliyun.com/live/detail/27102
【训练营打卡学习】https://developer.aliyun.com/learning/trainingcamp/holo/3
好文章,需要你的鼓励
阿里团队开发的FantasyPortrait系统突破了传统人像动画的局限,通过隐式表情表示和掩码交叉注意力机制,实现了高质量的单人和多人肖像动画生成,特别在跨身份表情迁移方面表现出色,为视频制作和虚拟交流等领域带来新的技术可能性。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
Akamai坚持“简而未减、网络先行、拥抱开源”的独特定位。凭借“鱼与熊掌兼得”的特色,过去几年,Akamai在电商、流媒体、广告科技、SaaS、金融科技等行业客户中获得了广泛认可。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。