2020年,新冠疫情肆虐全球,
某制造厂商却订单满满,业务顺畅。
这一切要从两年前说起,
当时由于生产线全面升级,
随之而来的的是对原有的IT系统形成了挑战。
该工厂产品研发生产设计环节,
由 2D 图纸向 3D 图纸升级产生海量的数据,
二维图纸产生的数据量大概是 1M 的数据量,
而设计一个 3D 模型至少要 1G 的数据量,
数据存储扩展面临新的挑战。
同时该工厂面临着业务系统批处理的挑战,
包括 ERP 系统, PRM 系统, SAM 系统业务的激增,
给批处理月结的 IT 存储系统性能形成了挑战。
制造业对于 IT 系统高可用或者可靠性有非常大的要求,
因为 IT 系统的故障或者一个小灾难,
就可能造成生产环节的业务连续性中断。
IBM 为该制造企业提出软件定义存储的方式,
来解决 IT 升级的需求。
基于 IBM Spectrum Scale 构建的软件定义存储,
能够确保任何地点,数据安全,任何规模的混合云实现性能的提升,
并支持不同架构、不同应用的数据访问。
IBM 软件定义存储就能够提供灵活弹性的云化敏捷架构,
通过分布式存储架构满足了数据的开放性、多样性,
解决制造业在敏态业务中产生的海量数据存储及流转问题。
同时最新的 IBM Spectrum Scale 5.1版本,
基于更为简化的混合云的数据存储和数据访问和管理,
实现 AI 和大数据的存储功能,
IBM Spectrum Scale 5.1不仅实现混合云和容器的存储融合能力,
实现了 IBM Spectrum Scale、对象存储、NFS 存储之间
透明的数据访问和迁移。
最后,IBM 软件定义存储不仅满足了
智能制造在现有的业务系统对于混合云资源的需求。
同时利用 OpenShift + Cloud Packs 轻松连接混合云中的资源,
实现云原生应用的快速响应,
更好的支持未来新技术扩展、新应用开发。
想了解更多制造业的存储解决方案和详细的IBM存储功能请点击链接:http://www.zhiding.cn/special/IBM_2021_IT_infrastructure
咨询IBM专家:400 6692 039
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。