Google Cloud今天宣布Filestore High Scale的Beta版全面上市,这是一个新的文件存储层,为运行高性能计算工作负载的客户新增了横向扩展存储功能。
Filestore High Scale被认为是Google Cloud Filestore服务发展的下一阶段,整合了谷歌去年7月以2亿美元收购数据存储初创公司Elastifile所获得的功能,其部署的共享文件系统让用户拥有数百TB的存储容量,并可以实现每秒吞吐量数十GB,IOPS达数十万次。
谷歌产品经理Tad Hunt和Allon Cohen在发布这一消息的博客文章中写道:“无论是迁移传统应用,使用Kubernetes对现有应用进行现代化改造,还是通过扩展满足大型计算工作负载的性能要求,Filestore现在都可以轻松应对这些挑战。”
已经有早期用户在使用Filestore High Scale了。哈佛医学院瓦格纳实验室博士后研究员Christoph Gorgulla使用该服务启动了一个名为VirtualFlow的虚拟筛查程序,用于发现COVID-19的潜在治疗方法。Gorgulla解释说,这个程序让他所在的实验室能够在药物发现过程中,针对目标蛋白质测试数十亿个小分子,速度比传统方法要快得多。
Gorgulla说:“我们需要这样一个文件系统,可以处理配置了数万个vCPU的数千个客户端同时生成的负载。大多数Filestore设置都是自动化的,我们可以即时扩展容量,可以通过简单的图形界面主动监控工作流的速度。VirtualFlow可以大大缩短了发现药物和治疗措施所需的时间,有望更快地开发出针对COVID-19和其他疾病的疗法。”
谷歌表示,Filestore High Scale横向扩展存储还适用于电子设计自动化、财务建模、基因组学和视频处理等工作负载。
Hunt和Cohen写道:“文件存储是高性能计算应用的一个关键组成部分,而Filestore High Scale能够满足这些需求,包括在云中横向扩展文件存储的可预测性能,按需扩展和缩减文件系统的能力。了解你所需性能水平的相关成本之后,就可以更轻松地设计出解决方案并根据不断变化的工作负载需求进行优化。”
他们说,Filestore High Scale作为完全托管的云服务,最大的特点是易于使用,只需单击几下即可启动实例,并通过Google Cloud或API调用实现自动管理。该服务还可以与Google Cloud Monitoring配合使用,监视文件系统的运行状况,还可以集成各种工作负载管理调度系统。此外谷歌还增加了新的访问控制功能,以满足更高级别的安全要求。
Constellation Research分析师Holger Mueller认为,高性能计算应用需要可扩展的存储解决方案,这种解决方案必须能够随时服务和存储运行所需的大量数据。
他说:“谷歌通过Filestore High Scale产品提高了高性能存储能力,而且很高兴看到这个产品已经给COVID-19相关研究产生了影响,也很高兴看到谷歌对Elastifile的收购取得了成果。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。