8月26日,阿里云透露核心存储产品ESSD已率先采用这一最新的自研存储网络协议,并实现大规模商用,数据传输效率提高50%。
据了解,未来该协议还将继续演进,有望取代传统TCP网络协议。此前,谷歌、微软也曾先后发表论文试图突破瓶颈,但都未大规模应用。
随着AIoT时代的到来,所有数据都要求实时采集、传输、计算,传统 TCP 和 RDMA 网络都无法完美适配云时代的存储需求。
ESSD是2018年阿里云研发的业内首个百万级 IOPS 、百微秒延时云存储产品,相当于一个千万平米的巨型数据仓库,自带时速超过120公里的超级高速,仅需1秒就可以完成1部高清电影的传输和存储。
阿里巴巴研究员,阿里云智能块存储研发资深总监满弓谈到,ESSD优异的性能得益于阿里云的多项技术自研,底层架构基于自研大规模分布式存储系统盘古 2.0,存储芯片采用自研Aliflash SSD,并且依托自研网络协议 Luna 和增强型RDMA 数据传输协议,结合自研HPCC流控算法,深度优化TCP,大幅降低计算资源消耗及响应延时,使ESSD的数据传输效率可提高50%。
采用全新网络协议的ESSD已正式商用,目前服务数万企业,涵盖自动驾驶、工业物联网、AR/VR、证券交易、电商搜索等数据高并发领域。
“ESSD为企业数据存储和业务敏捷创新提供了新的可能,成为AIoT海量数据存储场景的标配。”阿里云智能存储产品资深总监Alex Chen表示。
阿里云拥有全球最丰富的云存储产品家族,总数据存储量达数十EB,凭借多层次防护、跨区域容灾等能力连续三年入选Gartner全球云存储魔力象限,并且被列为全球领导者地位。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。