8月26日,阿里云透露核心存储产品ESSD已率先采用这一最新的自研存储网络协议,并实现大规模商用,数据传输效率提高50%。
据了解,未来该协议还将继续演进,有望取代传统TCP网络协议。此前,谷歌、微软也曾先后发表论文试图突破瓶颈,但都未大规模应用。
随着AIoT时代的到来,所有数据都要求实时采集、传输、计算,传统 TCP 和 RDMA 网络都无法完美适配云时代的存储需求。
ESSD是2018年阿里云研发的业内首个百万级 IOPS 、百微秒延时云存储产品,相当于一个千万平米的巨型数据仓库,自带时速超过120公里的超级高速,仅需1秒就可以完成1部高清电影的传输和存储。
阿里巴巴研究员,阿里云智能块存储研发资深总监满弓谈到,ESSD优异的性能得益于阿里云的多项技术自研,底层架构基于自研大规模分布式存储系统盘古 2.0,存储芯片采用自研Aliflash SSD,并且依托自研网络协议 Luna 和增强型RDMA 数据传输协议,结合自研HPCC流控算法,深度优化TCP,大幅降低计算资源消耗及响应延时,使ESSD的数据传输效率可提高50%。
采用全新网络协议的ESSD已正式商用,目前服务数万企业,涵盖自动驾驶、工业物联网、AR/VR、证券交易、电商搜索等数据高并发领域。
“ESSD为企业数据存储和业务敏捷创新提供了新的可能,成为AIoT海量数据存储场景的标配。”阿里云智能存储产品资深总监Alex Chen表示。
阿里云拥有全球最丰富的云存储产品家族,总数据存储量达数十EB,凭借多层次防护、跨区域容灾等能力连续三年入选Gartner全球云存储魔力象限,并且被列为全球领导者地位。
好文章,需要你的鼓励
在我们的日常生活中,睡眠的重要性不言而喻。一个晚上没睡好,第二天的工作效率就会大打折扣,而充足的睡眠不仅能让我们恢复精力,还能帮助大脑整理和巩固当天学到的知识。有趣的是,AI模型竟然也表现出了类似的“睡眠需求”。
DeepSeek-AI团队通过创新的软硬件协同设计,仅用2048张GPU训练出性能卓越的DeepSeek-V3大语言模型,挑战了AI训练需要海量资源的传统观念。该研究采用多头潜在注意力、专家混合架构、FP8低精度训练等技术,大幅提升内存效率和计算性能,为AI技术的民主化和可持续发展提供了新思路。
尽管模型上下文协议(MCP)自11月推出以来用户数量快速增长,但金融机构等监管行业仍保持谨慎态度。银行等金融服务公司虽然在机器学习和算法方面是先驱,但对于MCP和Agent2Agent(A2A)系统的采用较为保守。监管企业通常只使用内部代理,因为其API集成需要经过多年审查以确保合规性和安全性。专家指出,MCP缺乏基本构建块,特别是在互操作性、通信标准、身份验证和审计跟踪方面。金融机构需要确保代理能够进行"了解您的客户"验证,并具备可验证的身份识别能力。
加拿大女王大学研究团队首次系统评估了大型视频语言模型的因果推理能力,发现即使最先进的AI在理解视频中事件因果关系方面表现极差,大多数模型准确率甚至低于随机猜测。研究创建了全球首个视频因果推理基准VCRBench,并提出了识别-推理分解法(RRD),通过任务分解显著提升了AI性能,最高改善幅度达25.2%。