(一)小明作为一家传统的制造企业的IT管理者,在过去为企业IT建设立下了汗马功劳。
从核心ERP系统到生产管理系统,到结算、报表系统,BI/BA系统等。逐步构建了一套数据中心系统。
(二)但是互联网春风吹来,海量数据产生。基于多云环境构建的IT环境成为趋势,同时基于海量的数据为基础,AI应用正在成为企业提升竞争力的有效手段。公司董事会也逐步把多云环境的IT架构和AI应用发展作为重中之重
(三)但是多云环境的数据如何统一管理、自由流动?面对多云趋势,多年的IT基础架构如何管理,是扔掉重建?还是有效利旧?成本如何考虑?
(四)同时作为在AI环境中的算法、算力的第三大支柱——数据,如何确保数据 ready for AI,建立自动化的数据管道,高性能支持AI应用(无 IA不 AI)?成为小明考虑的问题
(五)小明悟道了:数字化已经进入新的篇章,从关键业务上云,到企业级生产型AI,企业需要重新思考IT,思考全新的数据存储应用,面向未来的现代架构最为重要。
想知道小明看到的那片曙光是什么?
尽在7月18日2019 IBM Systems 科技论坛
IBM重构了现代化基础架构,基于全新的全闪存阵列+存储软件spectrum,打造的智能+数据存储架构。助力企业构建多云敏捷、安全无虞的现代架构,赋能企业构建未来的多云与AI之旅的能力。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。