2016年成立于纽约的VAST Data公司,日前宣布推出通用存储平台 (Universal Storage Platform),并表示公司已将数十千兆字节(GB)的存储出售给信息技术公司以及生物和医疗技术公司。VAST Data已获得8000万美元融资,公司的目标是希望帮助用户在最初归档应用程序时,无需再在多层级存储(特别是硬盘驱动器)环境和全固态解决方案两者中做出权衡取舍。令人非常感兴趣的是,VAST Data的通用存储平台 (Universal Storage Platform) 也是首个应用了3D XPoint存储技术的平台之一,并将存储系统的成本较传统企业闪存降低了80%。
VAST的通用存储平台在其存储前端使用英特尔傲腾(3D XPoint) NVMe SSD,可实现每秒万亿字节(TB/s)的写入速度和每秒数百万次的读写速度 (IOPs),并提供每单元四比特 (QLC)的3D NAND,进行艾字节规模的文件系统(NFS)和对象(S3)存储。VAST Data表示,使用NVMe QLC闪存和NVMe over Fabric (NVMe-oF) 不仅可以显著提高性能,还能将存储系统的成本降至可以媲美硬盘成本的水平。他们的目标是通过这种方法消除所有闪存、NAS和云对象以及文档存储,并将其集成到VAST的通用存储平台之上。
VAST存储系统组件(图片来自VAST产品展示)
该公司表示,他们在客户端网络中提供了一个跨文件和对象的全局命名空间,通过数据中心规模转换的NVMe以太网结构访问3D XPoint内存(存储级内存,下图中简称SCM)。SCM缓存层下面的QLC闪存结合有趣的软件管理功能,则可以优化性能和存储利用率。除了全局命名空间之外,他们还提供数据保护和全局压缩。
采用傲腾写缓冲器的VAST全局命名空间QLC闪存(图片来自VAST产品展示)
VAST宣称,“服务器在 VAST架构中是松散耦合的,因为不需要相互协调输入和输出,它们的数量几乎可扩展到无穷大。它们也不受任何集群式串扰的阻碍,那些串扰通常会给无共享(Shared-nothing)架构带来挑战。此外,VAST服务器可以像集装箱一样嵌入到应用服务器中,为每台主机提供NVMe over Fabrics (NVMeoF) 架构的性能。”
该公司可通过减少闪存上的写入来使用QLC闪存固态硬盘,特别是通过缓冲傲腾内存的写入,来实现写入放大,并使用应用感知数据放置在闪存上实现顺序写入。他们还尽可能将写入与擦除操作结合起来,写入完整的QLC擦除块。
VAST Data公司的数据存储模型基于几种有趣的方法来减少所需的容量包括自描述数据结构,发现并利用数据相似性模式在“全局命名空间中”进行数据压缩和重复数据删除,“其所拆分的数据细粒度比当前重复数据删除技术要小4000到128000倍。” VAST Data还宣称其重建速度比硬盘要快若干倍。他们还预测了将数据放置于闪存中的数据使用情况。使用本地可解码压缩算法在1毫秒内即可完成读取操作。
VAST展示了一种全局命名空间存储系统,该系统利用基于傲腾的缓冲器和数据管理功能来管理QLC闪存系统的损耗,该闪存系统的耐久性及保修期为10年。如今,诸如傲腾这样的新兴持久性内存正在对存储架构产生巨大影响。
好文章,需要你的鼓励
太空数据中心能够解决地面数据中心的根本局限性。在轨道上,太阳能充足且持续,无夜晚、云层或季节变化影响。太空数据中心可减少卫星客户端延迟,为太空系统提供实时计算能力,并推动人类太空扩张所需技术发展。主要挑战包括散热、规模化部署、太空碎片风险和维护难题,但随着成本下降和技术进步,太空数据中心将成为必然趋势。
印度理工学院研究团队从大脑神经科学的戴尔定律出发,开发了基于几何布朗运动的全新AI图像生成技术。该方法使用乘性更新规则替代传统加性方法,使AI训练过程更符合生物学习原理,权重分布呈现对数正态特征。研究团队创建了乘性分数匹配理论框架,在标准数据集上验证了方法的有效性,为生物学启发的AI技术发展开辟了新方向。
美国能源部宣布与AMD、英伟达和甲骨文建立战略合作关系,将在两个国家实验室建造四台强大的AI超级计算机。AMD与HPE合作为主权AI工厂超算项目提供技术支持,包括Lux和Discovery两台系统。英伟达与甲骨文合作打造能源部迄今最大的AI系统Solstice和Equinox,其中Solstice将配备10万个英伟达Blackwell GPU。这些项目旨在巩固美国在人工智能和高性能计算领域的领导地位。
Sony AI开发出SoundReactor框架,首次实现逐帧在线视频转音频生成,无需预知未来画面即可实时生成高质量立体声音效。该技术采用因果解码器和扩散头设计,在游戏视频测试中表现出色,延迟仅26.3毫秒,为实时内容创作、游戏世界生成和互动应用开辟新可能。