据透露,开源Ceph存储系统的研发速度可能比大家的预期更快一些。对于感兴趣的朋友们,根据我们得到的消息,四节点Ceph集群可以利用美光NVMe SSD提供227.7万随机读取IOPS——这样的水平在面对任何标准的考核中都堪称高性能。
美光公司发布了一份长达31页的参考架构(简称RA,https://www.micron.com/resource-details/30c00464-e089-479c-8469-5ecb02cfe06f)文档,旨在宣称其NVMe闪存驱动器能够为Ceph集群(此前曾被称为快速访问存储软件系统)带来的加速效果。
Ceph属于开源存储方案,其利用底层对象存储方案交付文件、块与对象存储资源。其通常利用集群服务器节点构建而成,并借此实现性能、可伸缩性与容错性。此外,其中还设有对象存储节点与监控节点,二者共同为Ceph存储提供虚拟功能池。

该产品目前由红帽以及SUSE开始提供。
其基本参考架构组件包括:
整体系统可容纳7U机架空间,用户可以利用其构建起规模更大的Ceph存储体系。
其侧重于加速块性能,同时亦加速对象IO。美光公司表示性能水平可参考下图所示:

在理想情况下,这套系统的性能水平可以与其它使用NVMe驱动器的SAN阵列或者对象存储阵列进行比较; 但可以肯定的是,其性能将必然高于使用磁盘驱动器的存储系统。
总结来讲,这套参考架构定义了一套得到预先验证且完整记录的系统,可供技术客户及销售商用于构建及部署令人惊讶的高性能Ceph系统。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。