HPC供应商DDN加入小型的、但不断增长逐渐进入企业AI主流市场的公司,DDN旗下的存储产品可与Nvidia的DGX-1 GPU服务器结合在一起。
DDN最近出台了一系列举措以扩展旗下企业存储公信力,上个月收购了Tintri(https://www.theregister.co.uk/2018/09/05/ddn_buys_tintri_biz_remains_for_60mn/)后有了出售企业存储阵列的能力,现在又凭借旗下A3I品牌的可扩展参考架构产品进入人工智能(AI)系统领域。
企业AI系统市场最初由Pure建立,Pure将AIRI(https://www.theregister.co.uk/2018/03/27/pure_nvidia_ai_airi/)的FlashBlade阵列与DGC-1双响炮结合在一起。后来NetApp携其A700全闪存阵列/ FGX-1组合加入该市场,后来又推出更快的A800/ DGX-1装置(https://www.theregister.co.uk/2018/08/03/netapp_a800_pure_airi_flashblade/)。戴尔EMC则推出人工智能完备解决方案(Ready Solution for AI):深度学习(https://www.theregister.co.uk/2018/08/07/dell_emc_ai_deep_learning/ ),思科也推出了C480 AI /机器学习服务器(https://www.theregister.co.uk/2018/09/10/cisco_ai_server_nvlinked_tesla_gpu/)。
所有这些系统都涉及到全闪存,DDN则拥有AI200和AI400全闪存系统以及混合闪存/磁盘AI7990。二者都运行DDN的Exascaler软件,Exascaler是个基于Lustre的并行文件系统。
AI200是个容量高达360TB的24倍双端口NVMe闪存驱动器,置于2U机箱内,以4 x EDR InfiniBand(EDR IB)或100Gbit / s以太网(100 GbitE)连接到DGX-1。AI200可提供高达20GB/秒的文件系统顺序读取吞吐量和超过100万IOPS。
AI400使用相同的机箱,可提供高达40GB/秒的顺序读取吞吐量和高达300万IOPS。AI400具有8个EDR InfiniBand端口或100GbitE端口,闪存容量与AI200相同。
而较大的AI7990则置于4U机箱内,回归20Gb /秒的顺序读取性能,可提供高达700,000的IOPS。AI7990支持90 x 3.5英寸的插槽,可用于SSD和磁盘驱动器。最多可以有4个扩展机座,每机座有90个架,可提供高达5.6PB的容量。
DDN 的A3I解决方案简介可从网上下载(https://www.ddn.com/?wpdmdl=42534&ind=1538608827207),简介里提供了使用A3I软件的示例,例如Resnet-50和Resnet-152,Caffe GoogleNet,Inception V3 。
A3I解决方案指南(http://www.ddn.com/?wpdmdl=42573&ind=1538599065785)提供了Tensorflow,Horovod,TensorRT,Torch,PyTorch提供具有9 x DGX-1服务器和系统性能的AI200及其他AI框架的配置示例。
在Resnet-152和Resnet-50测试中,AI200的测试速度比竞争对手Pure、NetApp和Dell EMC的系统更快。思科未提供旗下AI系统性能的任何公开信息。
AI200和AI7990数据表可从此处获取:https://www.ddn.com/products/a3i-accelerated-any-scale-ai/。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。