HPC供应商DDN加入小型的、但不断增长逐渐进入企业AI主流市场的公司,DDN旗下的存储产品可与Nvidia的DGX-1 GPU服务器结合在一起。
DDN最近出台了一系列举措以扩展旗下企业存储公信力,上个月收购了Tintri(https://www.theregister.co.uk/2018/09/05/ddn_buys_tintri_biz_remains_for_60mn/)后有了出售企业存储阵列的能力,现在又凭借旗下A3I品牌的可扩展参考架构产品进入人工智能(AI)系统领域。
企业AI系统市场最初由Pure建立,Pure将AIRI(https://www.theregister.co.uk/2018/03/27/pure_nvidia_ai_airi/)的FlashBlade阵列与DGC-1双响炮结合在一起。后来NetApp携其A700全闪存阵列/ FGX-1组合加入该市场,后来又推出更快的A800/ DGX-1装置(https://www.theregister.co.uk/2018/08/03/netapp_a800_pure_airi_flashblade/)。戴尔EMC则推出人工智能完备解决方案(Ready Solution for AI):深度学习(https://www.theregister.co.uk/2018/08/07/dell_emc_ai_deep_learning/ ),思科也推出了C480 AI /机器学习服务器(https://www.theregister.co.uk/2018/09/10/cisco_ai_server_nvlinked_tesla_gpu/)。
所有这些系统都涉及到全闪存,DDN则拥有AI200和AI400全闪存系统以及混合闪存/磁盘AI7990。二者都运行DDN的Exascaler软件,Exascaler是个基于Lustre的并行文件系统。
AI200是个容量高达360TB的24倍双端口NVMe闪存驱动器,置于2U机箱内,以4 x EDR InfiniBand(EDR IB)或100Gbit / s以太网(100 GbitE)连接到DGX-1。AI200可提供高达20GB/秒的文件系统顺序读取吞吐量和超过100万IOPS。
AI400使用相同的机箱,可提供高达40GB/秒的顺序读取吞吐量和高达300万IOPS。AI400具有8个EDR InfiniBand端口或100GbitE端口,闪存容量与AI200相同。
而较大的AI7990则置于4U机箱内,回归20Gb /秒的顺序读取性能,可提供高达700,000的IOPS。AI7990支持90 x 3.5英寸的插槽,可用于SSD和磁盘驱动器。最多可以有4个扩展机座,每机座有90个架,可提供高达5.6PB的容量。
DDN 的A3I解决方案简介可从网上下载(https://www.ddn.com/?wpdmdl=42534&ind=1538608827207),简介里提供了使用A3I软件的示例,例如Resnet-50和Resnet-152,Caffe GoogleNet,Inception V3 。
A3I解决方案指南(http://www.ddn.com/?wpdmdl=42573&ind=1538599065785)提供了Tensorflow,Horovod,TensorRT,Torch,PyTorch提供具有9 x DGX-1服务器和系统性能的AI200及其他AI框架的配置示例。

在Resnet-152和Resnet-50测试中,AI200的测试速度比竞争对手Pure、NetApp和Dell EMC的系统更快。思科未提供旗下AI系统性能的任何公开信息。

AI200和AI7990数据表可从此处获取:https://www.ddn.com/products/a3i-accelerated-any-scale-ai/。
好文章,需要你的鼓励
Akamai的分布式边缘架构从设计之初就以韧性为核心,全球平台通过跨区域负载均衡和智能路由技术,确保即使某些节点出现故障,流量也能无缝切换至可用节点。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。