HPC供应商DDN加入小型的、但不断增长逐渐进入企业AI主流市场的公司,DDN旗下的存储产品可与Nvidia的DGX-1 GPU服务器结合在一起。
DDN最近出台了一系列举措以扩展旗下企业存储公信力,上个月收购了Tintri(https://www.theregister.co.uk/2018/09/05/ddn_buys_tintri_biz_remains_for_60mn/)后有了出售企业存储阵列的能力,现在又凭借旗下A3I品牌的可扩展参考架构产品进入人工智能(AI)系统领域。
企业AI系统市场最初由Pure建立,Pure将AIRI(https://www.theregister.co.uk/2018/03/27/pure_nvidia_ai_airi/)的FlashBlade阵列与DGC-1双响炮结合在一起。后来NetApp携其A700全闪存阵列/ FGX-1组合加入该市场,后来又推出更快的A800/ DGX-1装置(https://www.theregister.co.uk/2018/08/03/netapp_a800_pure_airi_flashblade/)。戴尔EMC则推出人工智能完备解决方案(Ready Solution for AI):深度学习(https://www.theregister.co.uk/2018/08/07/dell_emc_ai_deep_learning/ ),思科也推出了C480 AI /机器学习服务器(https://www.theregister.co.uk/2018/09/10/cisco_ai_server_nvlinked_tesla_gpu/)。
所有这些系统都涉及到全闪存,DDN则拥有AI200和AI400全闪存系统以及混合闪存/磁盘AI7990。二者都运行DDN的Exascaler软件,Exascaler是个基于Lustre的并行文件系统。
AI200是个容量高达360TB的24倍双端口NVMe闪存驱动器,置于2U机箱内,以4 x EDR InfiniBand(EDR IB)或100Gbit / s以太网(100 GbitE)连接到DGX-1。AI200可提供高达20GB/秒的文件系统顺序读取吞吐量和超过100万IOPS。
AI400使用相同的机箱,可提供高达40GB/秒的顺序读取吞吐量和高达300万IOPS。AI400具有8个EDR InfiniBand端口或100GbitE端口,闪存容量与AI200相同。
而较大的AI7990则置于4U机箱内,回归20Gb /秒的顺序读取性能,可提供高达700,000的IOPS。AI7990支持90 x 3.5英寸的插槽,可用于SSD和磁盘驱动器。最多可以有4个扩展机座,每机座有90个架,可提供高达5.6PB的容量。
DDN 的A3I解决方案简介可从网上下载(https://www.ddn.com/?wpdmdl=42534&ind=1538608827207),简介里提供了使用A3I软件的示例,例如Resnet-50和Resnet-152,Caffe GoogleNet,Inception V3 。
A3I解决方案指南(http://www.ddn.com/?wpdmdl=42573&ind=1538599065785)提供了Tensorflow,Horovod,TensorRT,Torch,PyTorch提供具有9 x DGX-1服务器和系统性能的AI200及其他AI框架的配置示例。
在Resnet-152和Resnet-50测试中,AI200的测试速度比竞争对手Pure、NetApp和Dell EMC的系统更快。思科未提供旗下AI系统性能的任何公开信息。
AI200和AI7990数据表可从此处获取:https://www.ddn.com/products/a3i-accelerated-any-scale-ai/。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。