众所周知,科技领域,最不缺的就是大量的新概念,新理论,新技术……近几年,除了人工智能、物联网、深度学习等较火的技术外,雾计算随着云计算及边缘计算的快速发展,逐渐出现的大众视野中,成为科技界的流行词。
目前,雾计算是国际上物联网领域最新的概念和技术,由思科在2011年正式提出,是云计算的延伸概念。只不过云计算是将数据几乎保存在云中,而雾计算是将数据、数据处理和应用程序集中在网络边缘的设备中,数据的存储及处理更依赖本地设备,而非服务器。雾计算强调数量,支持更多的边缘节点,不管单个计算节点能力多么弱都要发挥作用,很适合移动性的应用。
不过易与边缘计算混淆,两者都内置了地理位置。其实,了解雾计算最简单的方法就是它与位置无关,可以是从边缘到云,或介于两者之间的任何地方。
除此之外,在雾计算中,用户可以根据服务的作用进行编程,即今天部署到云的相同服务可以在明天边缘部署,可以理解为支持庞大资源生态系统的框架。它可以灵活的消耗计算资源,且可以提供诸如速度、可用性、带宽、可扩展性及成本等优势。
随着物联网的快速发展,雾计算也在持续增长,各个厂商也抓住时机,推出各类服务及产品来吸引客户。不过各厂商、用户需确保符合以下两个主要标准:
一、提供一系列计算能力,涵盖从现场到云计算的连续体
在当前以云为中心的计算基础架构中,所使用的大部分处理能力都位于远云中。 但随着连接设备的数据激增,未来两年内将达到200亿,那么,距离传播的数据量也将急剧增加。
我们知道,通过边缘计算实现了对更靠近需要设备的处理能力需求激增,进一步推进了雾计算的"LAN内的处理能力"的理念,处理能力更靠近数据源。不是在中央服务器里整理后实施处理,而是在网络内的各设备实施处理。
由于雾计算可以在任何地方利用计算,包手在地理上最适合的计算机上,它还可以提供低延迟计算,因此通常出于与边缘计算相同的原因而被寻找。因此,术语"边缘"和"雾"通过同义使用,尽管边缘计算只是更全面的雾计算基础设施的一个方面。
与边缘计算相比,雾计算更具备可扩展性。不需要精确划分处理能力的有无,根据设备的能力也可以执行某些受限处理,但是更复杂的处理实施的话需要积极的连接。
事实上,雾计算与边缘计算很相似,但是在数据的收集,处理,通信的方法层面还是存在诸多不同,各有利弊。
二、根据需求使用最佳计算资源
雾计算不仅包含比云计算或边缘计算更广泛的地理位置,而且其地理位置还是动态的。计算机可以在任何地方处理数据,并且其地理位置是可以动态的。可以在任何地方处理数据,并且位置也可以定期修改,主要是通过使用位置不可知服务来实现的。
对于部署软件服务的工程师而言,这意味着他们的部署到雾计算架构时指定服务所需的内容,而不是它将运行的位置。例如,如果要求低延迟,则服务将自动部署到最佳可用匹配,无论是同一房间中的服务器、区域数据中心,还是如果没有更快的可用性,则可能是云计算数据中心。
通过雾计算广泛指定业务需求的能力有可能通过减轻配置、扩展和维护固定计算资源的负担,CIO们只需为每项服务优先考虑低延迟、损失成本或绿色能源等功能,平台将自动将服务部署到最符合该标准的计算机上。
总之,随着科技的高速发展,业内出现的新概念,如雾计算、边缘计算等,这些并不是用来替换云计算的,而是对云计算的"bug"类问题进行"修补"。毫无疑问,云计算和雾计算融合的力量,未来将会改变更多行业的格局。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。