近些年,云计算的发展大家已经有目共赌,确实如众多媒体所述,已进入了收割之年。而与之协同的边缘计算近几年也逐渐成为"网红",并传出有替代云计算之势。事实上,边缘计算对云计算是有一定冲击,但它与云计算也有很强的协同。不少国内外云服务商为了守住原有的市场空间,纷纷提前布局边缘计算领域。
对于边缘计算,我们先啰嗦一下概念,这是一种分散式运算的架构,它将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘计算能够将处理和数据保留放置在更接近目标系统的系统上,该系统正在为其收集数据以及提供自主处理。
据国际数据公司IDC预测,到2021年,全球云计算市场的规模将达到5650亿美元,这其中约有20%为边缘云,市场规模可达到1130亿美元。正是由于边缘计算独特的优势,使得业内各大巨头如AWS、思科、华为、IBM、英特尔等不断发力此领域。
之所以业内出现替代云计算的说法,其追根其源还是边缘计算独特的架构优势,无需将所有数据传输到后端系统(通常在云端)进行处理,它的目标是快速地处理接近设备的数据,这减少了延迟并且还可以提供更好的安全性和可靠性。
不过边缘计算系统并不孤立。实际上,它们与后端系统一起工作以收集主数据并提供更深入的处理,这就是边缘计算和云计算提供单一共生解决方案的方式,绝不会出相相互排斥现象。
两者是两个截然不同的架构。围绕边缘计算笔者总结了几个要点,使企业能够更好的利用平台;
一、 如果允许,边缘计算应运行与云中相同的全部或部分代码树,这意味着如果用户要更新基于边缘的软件,则需要同时更新基于云的软件。因此,用户需要在云端和边缘使用相同的操作系统、处理器等。此外,用户须了解在边缘平台或云端运行的位置。
二、 对于边缘和集中式云平台,安全性必须是系统性的。如果可能的话,用户用于基于云的系统的安全系统需要延伸到边缘。与云和每个边缘计算系统的一次性安全操作相比,处理常见安全服务要容易的多。
三、 正如安全需要系统化一样,管理和监控也是如此。用户会发现边缘计算系统经常出现故障,通常是由于硬件和软件故障,而不是在云上。这是因为它们主要是在不受控制的环境中工作的物联网设备。下行计算设备需要重新启动、设计或快速更换。因此,监控软件应尽快提供警报,并告知基于云的软件设备不会接收数据。
未来,边缘计算的发展会更加快速,应用也不仅仅局限于物联网领域。目前国内外各大巨头、初创企业等都处于试水状态,缺少行业应用和重点场景的实践,无论是互联网还是物联网都离不开边缘计算。无可否认,边缘计算是继云计算之后,又一轮技术升级的战略通道。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。