近些年,云计算的发展大家已经有目共赌,确实如众多媒体所述,已进入了收割之年。而与之协同的边缘计算近几年也逐渐成为"网红",并传出有替代云计算之势。事实上,边缘计算对云计算是有一定冲击,但它与云计算也有很强的协同。不少国内外云服务商为了守住原有的市场空间,纷纷提前布局边缘计算领域。
对于边缘计算,我们先啰嗦一下概念,这是一种分散式运算的架构,它将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘计算能够将处理和数据保留放置在更接近目标系统的系统上,该系统正在为其收集数据以及提供自主处理。
据国际数据公司IDC预测,到2021年,全球云计算市场的规模将达到5650亿美元,这其中约有20%为边缘云,市场规模可达到1130亿美元。正是由于边缘计算独特的优势,使得业内各大巨头如AWS、思科、华为、IBM、英特尔等不断发力此领域。
之所以业内出现替代云计算的说法,其追根其源还是边缘计算独特的架构优势,无需将所有数据传输到后端系统(通常在云端)进行处理,它的目标是快速地处理接近设备的数据,这减少了延迟并且还可以提供更好的安全性和可靠性。
不过边缘计算系统并不孤立。实际上,它们与后端系统一起工作以收集主数据并提供更深入的处理,这就是边缘计算和云计算提供单一共生解决方案的方式,绝不会出相相互排斥现象。
两者是两个截然不同的架构。围绕边缘计算笔者总结了几个要点,使企业能够更好的利用平台;
一、 如果允许,边缘计算应运行与云中相同的全部或部分代码树,这意味着如果用户要更新基于边缘的软件,则需要同时更新基于云的软件。因此,用户需要在云端和边缘使用相同的操作系统、处理器等。此外,用户须了解在边缘平台或云端运行的位置。
二、 对于边缘和集中式云平台,安全性必须是系统性的。如果可能的话,用户用于基于云的系统的安全系统需要延伸到边缘。与云和每个边缘计算系统的一次性安全操作相比,处理常见安全服务要容易的多。
三、 正如安全需要系统化一样,管理和监控也是如此。用户会发现边缘计算系统经常出现故障,通常是由于硬件和软件故障,而不是在云上。这是因为它们主要是在不受控制的环境中工作的物联网设备。下行计算设备需要重新启动、设计或快速更换。因此,监控软件应尽快提供警报,并告知基于云的软件设备不会接收数据。
未来,边缘计算的发展会更加快速,应用也不仅仅局限于物联网领域。目前国内外各大巨头、初创企业等都处于试水状态,缺少行业应用和重点场景的实践,无论是互联网还是物联网都离不开边缘计算。无可否认,边缘计算是继云计算之后,又一轮技术升级的战略通道。
好文章,需要你的鼓励
谷歌DeepMind部门整合人工智能团队,专注于开发能模拟物理世界的先进AI大模型。新团队由前OpenAI项目负责人领衔,将提升AI对现实
随着生成式人工智能的广泛应用,其环境影响日益显著。凯捷研究院指出,企业可以通过选择合适的模型和实施可持续实践来显著减少碳排放。报告显示,大型语言模型的训练和运行耗能巨大,预计到2026年,生成式人工智能将占组织温室气体排放的4.8%。专家呼吁企业将可持续性纳入人工智能策略,以减缓环境影响。
UnifabriX 公司推出基于 CXL 连接的外部 MAX 内存设备,通过创新的内存架构设计,有效解决 AI 领域日益突出的内存带宽瓶颈问题。该方案不仅能显著提升 AI 处理性能,还可大幅降低部署成本,为大规模 AI 模型的训练和部署提供了新的解决思路。