2018年4月26日,以"聚浪成潮 致新志远"为主题的2018浪潮云数据中心全国合作伙伴大会IPF(Inspur Partner Forum)将在北京雁栖湖国际会展中心举行,届时将有数千名ISV、SI、CSP等不同行业领域的企业高管、海内外技术专家参加会议。
浪潮云数据中心合作伙伴大会(IPF2018)将于北京雁栖湖盛大召开
IPF合作伙伴大会是浪潮的年度盛会,不仅有新战略的宣布,还有创新产品的亮相。与以往不同,今年浪潮已经步入业务发展的新格局。2015年浪潮提出的5年进入全球前三的增长目标,已经在2017年提前3年实现。浪潮完成了从中国第一向全球领先厂商的蜕变。
IPF2015浪潮提出五年全球前三的目标
"聚浪成潮"目前已"潮已成势"。2018年,浪潮与伙伴"势在必行",将共同创造新的格局,开启全新的时代,推进五年全球第一的"新"目标。"新"成为了本届IPF的关键词。
大会亮点一:浪潮AI将全面升级
人工智能作为一项对人类社会变革带来深远影响的技术,正在呈现新思路、新格局。随着算法的日趋复杂与数据的持续增长,人工智能的下一个重大突破越来越依赖于计算技术的进步,提供计算力服务的公司在未来产业格局中的地位和价值将更加重要。
在过去的一年中,无论是产品技术创新,还是加速AI赋能行业,乃至全球AI生态推动等领域,浪潮都取得了重大突破。与百度联合发布的面向更大规模数据集和深层神经网络的超大规模AI计算模块--SR-AI整机柜服务器,与NVIDIA联合发布的超高密度服务器AGX-2,以及新型AI加速计算产品GX4。这些产品完整覆盖从单机4卡到64卡集群的不同AI计算平台,可支持从小规模的样本训练到千亿样本、万亿参数级别的超大规模模型训练,能够满足AI云、深度学习模型训练和线上推理等各类AI应用场景对计算架构性能、功耗的不同需求。同时,浪潮也发布了人工智能深度学习训练集群管理软件AIStation和Teye计算框架分析工具,并持续更新集群版开源深度学习框架Caffe-MPI。
今年,浪潮AI将全面升级,提供一系列AI计算力的核心价值与能力,驱动一个可进化的智能世界的蓬勃发展。
大会亮点二:智慧计算创新成果
IPF也是业界重要的创新成果交流平台,参会者将了解到最新的技术发展趋势。2018年,浪潮将继续聚焦智慧计算业务战略,在本届大会集中展示智慧计算的创新成果。
浪潮将与合作伙伴展出语音识别、超大规模深度学习训练、超融合架构等最新的技术、产品和解决方案,还会联合合作伙伴发布语音识别一体机等一系列联合方案。
除此之外,本次大会将有在AI、开放计算、咨询机构等领域的国内外大咖助阵,OCP开放计算社区CTO以及比亚迪、滴滴等企业负责人将就车联网、自动驾驶、智慧交通等技术话题进行演讲,分享实用经验。
大会亮点三:新的伙伴政策
在过去的16个季度中,有10个季度浪潮增速全球第一。目前浪潮已经有了相对完善的全球化布局,要保持当前的高速增长,浪潮需要构建海外市场的竞争力,因而,浪潮在2018年将进一步升级全球化战略。
另外,市场增长继续分化,CSP群体采购保持稳健,云、大数据、人工智能等新兴应用发展迅速。如何抓住市场新兴机会,是浪潮保持增长需要解决的第二个问题。
这些问题和挑战都将会对浪潮的伙伴政策产生深远影响,因而,IPF18浪潮新的伙伴政策将值得大家关注。
了解IPF2018更多详情,请点击访问
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。