人工智能(AI)概念的诞生已经有60年了,但是得到高速和本质的发展是近几年的事情。这主要是随着互联网、移动计算、超级计算、穿戴设备、物联网、云计算等技术的发展,实现信息环境巨变;以及智能城市、智能医疗、智能交通、智能游戏、无人驾驶、智能制造等社会新需求爆发,结合大数据、深度学习、增强现实、虚拟现实等AI技术与应用基础等因素,促成了人工智能从技术和应用上实现了巨大的发展。
因此在2015年,中国工程院设立重大研究项目:中国人工智能2.0发展战略研究,旨在对人工智能能有更清晰的研究与了解。
针对人工智能2.0,中国工程院原常务副院长、院士潘云鹤近日在“智涌钱塘”2018AI Cloud生态国际峰会上分享了他对于人工智能发展的最新观点和看法,我这里分享给大家。
2017年7月20日,中国发布了《新一代人工智能发展规划》。包括大数据智能、群体智能、跨媒体智能、人机混合增强智能自主智能系统等AI2.0关键理论与技术,以及智能城市、智慧医疗、智能制造等应用领域。
潘云鹤认为AI正在走向2.0,其本质原因是世界正从原来的二元空间进入新的三元空间。世界原来是二元空间:人类社会空间和物理空间。但是近年来,信息力量的迅速壮大,已成长除了人类社会空间和物理空间两极之外新一极:信息空间。
信息的发展从来自人类社会到信息互联,在绕过人类,直接来自物理世界比如通过传感器和物联网技术。未来人类社会会走向大知识,并推动人类认识与控制能力的大变化。
而三元空间的变化形成了信息流的新变化。新的信息流生成了认知的新变化。
潘云鹤认为AI2.0已经显露大量新特征,最后分享中他总结了五点供大家交流学习:
潘云鹤以AlphaGo训练过程为例,与传统博弈人工知识不同,AlphaGo深度学习不仅能“直觉感知(下一步在哪)”“棋局推理(全局获胜几率)”,而且将学习人类棋局和自我博弈积累棋局相结合。
在《Science》2016年1月1日发表的“群智之力量”的论文认为:结合群体智慧与机器性能来解决快速增长难题。
其中群智计算从众包模式到较为复杂的工作流程模式再到最复杂的协同求解问题的生态系统。
潘云鹤认为,大规模个体通过互联网构架的参与,可以表现出超乎寻常的智慧能力,是解决开放复杂问题的新途径。比如苹果App Store上百万的应用程序、WIKI百科近4000万词条等连接了世界众多国家的海量专家、工程师、科学家等参与。
各种穿戴设备、人机协同、人车共驾、脑控或者肌控外骨机器人等实现生物智能系统与机器智能系统的紧密耦合。
在语言、视觉、图形和听觉之间语义贯通,实现联想、推理、概括等智能的重要关键。
无人系统迅速发展,在工业装配线上机械手发展很快,但在灵活运动的领域中,无人系统迅猛发展的速度远快于机器人。
好文章,需要你的鼓励
大数据可观测性初创公司Monte Carlo Data推出全新Agent Observability产品,为AI应用提供全方位数据和AI可观测性。该工具帮助团队检测、分类和修复生产环境中AI应用的可靠性问题,防止代价高昂的"幻觉"现象,避免客户信任度下降和系统宕机。新产品采用大语言模型作为评判器的技术,能够同时监控AI数据输入和输出,提供统一的AI可观测性解决方案。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
网络安全公司Aikido披露了迄今最大规模的npm供应链攻击事件。攻击者通过钓鱼邮件获取维护者账户凭证,向18个热门JavaScript包注入恶意代码,这些包每周下载量超过26亿次。恶意代码专门劫持加密货币交易,监控浏览器API接口将资金转移至攻击者地址。受影响的包括chalk、debug等广泛使用的开发工具库。虽然攻击在5分钟内被发现并及时公开,但专家警告此类上游攻击极具破坏性,可能与朝鲜黑客组织相关。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。