人工智能(AI)概念的诞生已经有60年了,但是得到高速和本质的发展是近几年的事情。这主要是随着互联网、移动计算、超级计算、穿戴设备、物联网、云计算等技术的发展,实现信息环境巨变;以及智能城市、智能医疗、智能交通、智能游戏、无人驾驶、智能制造等社会新需求爆发,结合大数据、深度学习、增强现实、虚拟现实等AI技术与应用基础等因素,促成了人工智能从技术和应用上实现了巨大的发展。
因此在2015年,中国工程院设立重大研究项目:中国人工智能2.0发展战略研究,旨在对人工智能能有更清晰的研究与了解。
针对人工智能2.0,中国工程院原常务副院长、院士潘云鹤近日在“智涌钱塘”2018AI Cloud生态国际峰会上分享了他对于人工智能发展的最新观点和看法,我这里分享给大家。
2017年7月20日,中国发布了《新一代人工智能发展规划》。包括大数据智能、群体智能、跨媒体智能、人机混合增强智能自主智能系统等AI2.0关键理论与技术,以及智能城市、智慧医疗、智能制造等应用领域。
潘云鹤认为AI正在走向2.0,其本质原因是世界正从原来的二元空间进入新的三元空间。世界原来是二元空间:人类社会空间和物理空间。但是近年来,信息力量的迅速壮大,已成长除了人类社会空间和物理空间两极之外新一极:信息空间。
信息的发展从来自人类社会到信息互联,在绕过人类,直接来自物理世界比如通过传感器和物联网技术。未来人类社会会走向大知识,并推动人类认识与控制能力的大变化。
而三元空间的变化形成了信息流的新变化。新的信息流生成了认知的新变化。
潘云鹤认为AI2.0已经显露大量新特征,最后分享中他总结了五点供大家交流学习:
潘云鹤以AlphaGo训练过程为例,与传统博弈人工知识不同,AlphaGo深度学习不仅能“直觉感知(下一步在哪)”“棋局推理(全局获胜几率)”,而且将学习人类棋局和自我博弈积累棋局相结合。
在《Science》2016年1月1日发表的“群智之力量”的论文认为:结合群体智慧与机器性能来解决快速增长难题。
其中群智计算从众包模式到较为复杂的工作流程模式再到最复杂的协同求解问题的生态系统。
潘云鹤认为,大规模个体通过互联网构架的参与,可以表现出超乎寻常的智慧能力,是解决开放复杂问题的新途径。比如苹果App Store上百万的应用程序、WIKI百科近4000万词条等连接了世界众多国家的海量专家、工程师、科学家等参与。
各种穿戴设备、人机协同、人车共驾、脑控或者肌控外骨机器人等实现生物智能系统与机器智能系统的紧密耦合。
在语言、视觉、图形和听觉之间语义贯通,实现联想、推理、概括等智能的重要关键。
无人系统迅速发展,在工业装配线上机械手发展很快,但在灵活运动的领域中,无人系统迅猛发展的速度远快于机器人。
好文章,需要你的鼓励
人工智能和数据安全公司Cyera宣布完成4亿美元后期融资,估值达90亿美元。此轮F轮融资由贝莱德领投,距离上次融资仅6个月。随着95%的美国企业使用生成式AI,AI应用快速普及带来新的安全挑战。Cyera将数据安全态势管理、数据丢失防护和身份管理整合为单一平台,今年推出AI Guardian扩展AI安全功能。
上海AI实验室开发RePro训练方法,通过将AI推理过程类比为优化问题,教会AI避免过度思考。该方法通过评估推理步骤的进步幅度和稳定性,显著提升了模型在数学、科学和编程任务上的表现,准确率提升5-6个百分点,同时大幅减少无效推理,为高效AI系统发展提供新思路。
SAP在2026年全国零售联盟大展上发布了一系列新的人工智能功能,将规划、运营、履约和商务更紧密地集成到其零售软件组合中。这些更新旨在帮助零售商管理日益复杂的运营,应对客户参与向AI驱动发现和自动化决策的转变。新功能涵盖数据分析、商品销售、促销、客户参与和订单管理等领域,大部分功能计划在2026年上半年推出。
MIT团队开发的VLASH技术首次解决了机器人动作断续、反应迟缓的根本问题。通过"未来状态感知"让机器人边执行边思考,实现了最高2.03倍的速度提升和17.4倍的反应延迟改善,成功展示了机器人打乒乓球等高难度任务,为机器人在动态环境中的应用开辟了新可能性。