随着电商的快速发展,快递行业的运单量也随之大幅攀升。据统计,中国每天的运单量超过1亿,如何提升快递的效率,成为各大快递公司的争夺市场的重要手段。浪潮推荐采用服务器NF5288M5和SA5224M4组建的运单图片存储和识别分析系统,让废弃的运单图片成为加速快递行业效率的基础。
每当快递寄出或者收到后,我们都会拿到一张快递的底单,作为签收的凭据,同时也将作为快递公司的留底。而这些底单最终将去向何处?大部分的运单都将被扫描、电子化,存储到快递公司数据中心去。
快递已经成为社会不可或缺的行业
如何用更低的成本存储更多的运单图片
据国家邮政局数据,目前中国单日的快递运单量已经超过1亿,那么同样也需要有一样多的底单图片被扫描并存储。即使经过先进的压缩算法进行图片压缩,每天需要存储的数据也十分惊人。通常来说,大型快递公司的运单图片存储系统每次扩容都需要新增PB级的容量,这需要付出极高的采购和运营成本。
通常,数据中心的分布式存储系统是基于2U双路12盘的服务器。计算能力和存储能力比较均衡,也具有更广的适用性。但是对于运单图片这种偏存储的应用而言,存储的密度不足和计算部件成本过高问题就会比较明显。
目前,市场上高密度的存储服务器有4U36盘或者72盘甚至更高密度,相比之下,72盘甚至更高盘数的服务器会造成运维困难,同时单机功耗过高也将导致机架的供电不足和空间浪费。因此4U36盘位的服务器是目前比较合适的存储配置。同时,双路Intel E5系列CPU的功耗偏高、计算能力过剩的问题也让温冷数据存储成本居高不下。因此我们可以得出一个结论,快递运单图片存储服务器需要一款高存储密度、低能源消耗的服务器产品。
相比市面上的高密存储服务器,浪潮的一款基于Intel Xeon-D系列CPU的SA5224M4显得格外与众不同。在存储能力上,SA5224M4可同时支持36块3.5寸硬盘,相比传统存储机型存储密度提升50%,所需设备数量降低50%,可提高数据中心机柜空间利用率,能够为海量运单数据提供大容量存储。
而功耗上,浪潮服务器SA5224M4相比传统E5存储服务器降低35W以上。一般服务器的生命周期为三年,这样算下来,1000台的存储服务器集群就能节省下至少1050万的电费。
由于快递的运单数据来源可能通过快递员的扫码枪、用户的网络下单,也可能来自各网点的电脑录入,这就要求存储系统有一定的并发数据处理能力。而浪潮SA5224M4在低能耗的基础上,仍保持较好性能表现。运单图片存储应用在传统E5 CPU存储服务器上的负载率约为30%,而使用浪潮SA5224M4时CPU的负载率约在40%,满足应用计算性能需求的同时,保留足够的性能冗余,防止出现短时数据流量骤增带来的计算压力。
即使有一款高效低耗的存储服务器,运单图片的存储成本仍是不低。那么快递企业为什么需要存储这些看似无用的数据?如此庞大的订单数据,成为压在数据中心身上的一座大山,但是这座大山里却有着无穷无尽的资源。当有了足够多的数据积累后,快递公司能够挖掘着这部分资源,并以此让快递更快。
昨天废弃的底单数据如何让今天的快递更快?
运单图片中什么样的资源?有真实的人物信息、购物频次、发货和收货地址等等。当积累足够的数据时,就可以根据数据,决定网点的设置位置、派送时间、快递的运输/转运路径等,从而让快递的时效性得到更好地保障。
但是由于运单数据量极大,且传统手写体的运单图片不易识别,导致以往积累的运单大部分成为无效数据。传统的运单数据识别是人工跟单,要去识别各种各样的字体,识别率在60%左右。现在完成第一轮的翻译后,结合AI技术和现有的技术库历史数据进行识别,识别率可能能够达到90%。效率提升的代价是激增的并行计算量。
图片识别属于"计算密集型业务",因此单机密度和多机集群规模将直接影响人工智能应用的上线和运行效率。目前,单机4GPU卡已经成为标配,8卡正在成为主流。以浪潮NF5288M5为例,在2U空间内就能够支持部署8块NVLink或PCI-E 接口的GPU卡,单机即可提供单精度120 TFLOPs的峰值计算能力。并且可以在不依赖CPU的前提下,实现机内点到点通讯,减少了异构通讯的次数。同时,NF5288M5还可以挂接GPU扩展箱,支持在双路服务器系统中扩展到16片GPU卡, 实现更低的GPU并行通信延迟。
目前,浪潮服务器已经应用于国内主流快递公司。未来,通过浪潮SA5224M4和NF5288M5的运单图片存储和识别分析系统方案,能够让数据成为优化快递配送时效及未来决策的依据。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。