3月2日,联通大数据与中国银联首次联合发布《2018春节境内旅游消费大数据报告》(以下简称“报告”)。报告结合春节期间联通旅游大数据和银联网络消费交易数据,依托双方强大的大数据运算能力,呈现了今年春节期间国内旅游、消费等方面的新特点与新趋势。
腊月廿四回家忙,正月初六买不停
报告显示,今年春节呈现“两高”特征。
2月9日至16日期间,春运出行总人数超过1.7亿。其中2月9日(腊月廿四)为出行最高峰,当日出行人数达到8600余万,占比高达50.3%。 出行方式上,近半数旅客选择了自驾,44%的旅客选择了火车出行,只有6%的旅客选择了飞机出行。其中,80后、90后偏向火车出行,50后、60后和70后群体偏向自驾。
由于大年初一是公众集中拜年的时段,当天的消费交易金额为过年期间最低,仅占7.2%。该数据随后逐日回升,2月21日(大年初六)升至最高点,达22.6%。消费金额分布上,购物以73.1%的高比例成为春节期间最花钱的领域。经济发达的广东省用户在吃、住、购、娱上的花费,占全国总体的11.3%,位列榜首。之后依次是山东省、福建省、河南省。传统春节文化浓郁的上述地区,在年货购买等方面支出较高,或成为整体消费排名靠前的因素。
海南全境皆爆满,酒店消费列前茅
大量用户的迁徙,让一、二线城市再次成为“空城”。北上广的离城率分别为84.5%、83.1%、79.3%。与此同时,在满城率最高的18个城市中,海南省独占15个。三亚依旧是南下避寒的首选。三亚市的主要客源来自北京、黑龙江、广东,南下避寒仍是春节旅游的大趋势。亚龙湾、大东海、南山文化稳居最受欢迎的三大景点。由于恰逢春节且游客众多,三亚酒店消费金额居高不下,笔均交易额超过全国98%城市,其中五星级酒店比重超过83%,是全国平均水平1.42倍。
报告依据春节期间的离城率,结合各大旅游城市气候、景区情况等特点,推荐了深圳、昆明、珠海三个适合春节期间避寒的旅游目的地。当地相关部门及企业或可考虑加大本地春节游的推广力度。
周边旅游受追捧,区域消费有特色
报告以上海、天津等春节热门旅游城市为代表,结合地区消费数据,呈现了春节期间短途周边游的火爆情况,及区域消费的明显特征。
以上海为例,江苏、浙江、河南分列游客来源地前三;迪士尼、豫园、上海博物馆为上海最热门景点,周边游及亲子游特色鲜明。在消费方面,春节期间上海地区人均购物次数位居全国第三,最受欢迎的商圈为浦东机场免税店,整体呈现出购物能力强及时尚消费的倾向,契合上海作为“国际时尚消费城市”的特点。
分列天津春节期间旅客来源地前三的分别为河北、北京、山东,五大道旅游区、古文化街、宁园是春节期间受欢迎的景区,津门文化游成为主流。春节期间,跳舞及唱歌的消费交易笔数占该市整体娱乐消费交易的32.5%,娱乐消费笔均金额高达2786元。结合旅游及消费数据,天津艺术文化城市的特征明显。
强强联合是趋势 大数据大有可为
可以看出,依托联通大数据与中国银联的深度合作,将为春节旅游和消费领域提供有价值的大数据参考,利于相关部门及企业做出更准确、快速的决策。据了解,作为运营商中首家将大数据业务独立市场化运营的公司,联通大数据自去年9月25日挂牌成立以来,迅速形成了在数据、平台、应用三个层面六大能力,并打造了“8+N”的大数据产品及行业解决方案矩阵,先后服务了17个行业的714个合作伙伴,以“创新改变世界,数据联通未来”的理念,持续为产业赋能。
随着中国联通与中国银联签署了大数据合作框架协议,基于广泛的金融消费数据与通讯行为数据,双方在大数据领域开展长期合作,共建智能应用与场景。《2018春节境内旅游消费大数据报告》作为双方首次合作,充分发挥了各自品牌优势及数据资源的广泛性、互补性、高价值性。
未来,双方将通过更加深入广泛的合作,为各行各业提供更加丰富的大数据分析报告及大数据产品,赋能实体经济,为客户创造价值。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。